Skip to main content
Log in

Establishment of callus-cultures of the Argentinean mistletoe, Ligaria cuneifolia (R. et P.) Tiegh (Loranthaceae) and screening of their polyphenolic content

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Ligaria cuneifolia (R. et P.) Tiegh (Loranthaceae), known as liga, muérdago criollo, or Argentinean mistletoe, is a hemiparasitic plant with a broad distribution in central and northern Argentina. Pharmacological studies showed that L. cuneifolia extracts have hypolipemic, antioxidant, antibacterial, and immunomodulatory effects. We have established callus cultures from embryo and haustoria fragments. The highest frequency of callus formation from embryos (85%) was obtained on White medium with 4% (w/v) sucrose and 2.5 µM 1-naphtalene acetic acid and 9.2 µM kinetin as plant growth regulators (PGRs). From haustoria, the best result (35%) was obtained on Gamborg medium with 3% (w/v) sucrose and 0.45 µM 2,4-dichlorephenoxyacetic acid and 0.47 µM zeatin as PGRs. Thin layer chromatography showed that callus methanolic extract (2.5% w/v) had a lower content of flavonoids and proanthocyanins as compared to the wild plant (5% w/v for leaves, stems, and flowers), but a higher content of hydroxycinnamic acids. High performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) showed the presence of quercetin glycosides and phenolic acids in the methanolic extracts both from the parent plant and the callus obtained from embryo.

Key message

Callus cultures were established from embryo and haustorium explants of Ligaria cuneifolia. Leaves, stems, and meristems were recalcitrant to in vitro culture. Callus tissues contained quercetin glycosides and phenolic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abiatti D (1946) Las Lorantáceas Argentinas. Rev Mus La Plata NS Sec Bot 7:1–110

    Google Scholar 

  • Ahmad I, Hussain T, Ashraf I, Nafees M, Maryam RM, Iqbal M (2013) Lethal effects of secondary metabolites on plant tissue culture. Am Eurasian J Agric Environ Sci 13:539–547

    CAS  Google Scholar 

  • Ahmad I, Jaskani MJ, Nafees M, Ashraf I, Qureshi R (2016) Control of Media Browning in Micropropagation of Guava (Psidium guajava L.). Pak J Bot 48(2):713–716

    CAS  Google Scholar 

  • Amico GC, Nickrent DL (2007) Phylogeography of the Argentine mistletoe, Ligaria cuneifolia (Loranthaceae). Darwiniana 45:55–131

    Google Scholar 

  • Amuchástegui A, Petryna L, Cantero JJ, Núñez C (2003) Plantas parásitas del centro de Argentina. Acta Botánica Malacitana 28:37–46

    Google Scholar 

  • Bajaj YPS (1967) In vitro studies on the embryos of two Mistletoes, Amyema pendula and Amyema miquelli. NZ J Bot 5(1):49–56

    Article  Google Scholar 

  • Batchbaroiva RB, Slavov SB, Bossolova SN (1999) In vitro culture of Orobanche ramosa. Weed Res 39:191–197

    Article  Google Scholar 

  • Cerdá Zolezzi P, Fernández T, Aulicino PC, Cavaliere V, Greczanik S, Caldas Lopez E, Wagner ML, RIcco RA, Gurni A, Hajos S, Alvarez E (2005) Ligaria cuneifolia flavonoid fractions modulate cell growth of normal lymphocytes and tumor cells as well as multidrug resistant cells. Immunobiology 209(10):737–749

    Article  CAS  PubMed  Google Scholar 

  • Debergh PC, Read PE (1991) Micropropagation. In: Debergh PC, Zimmerman RH (eds) Micropropagation technology and application. Kluwer Academic Publishers, Dordrecht, pp 1–14

    Chapter  Google Scholar 

  • Dobrecky CB, Flor SA, López PG, Wagner ML, Lucangioli SE (2017) Development of a novel dual CD-MEKC system for the systematic flavonoid fingerprinting of Ligaria cuneifolia (R. et P.) Tiegh- Loranthaceae- extracts. Electrophoresis 38(9–10):1292–1300

    Article  CAS  PubMed  Google Scholar 

  • Espinosa-Leal CA, Puente-Garza CA, García-Lara S (2018) In vitro plant tissue culture: means for production of biological active compounds. Planta 248:1–8

    Article  CAS  Google Scholar 

  • Fukui M, Azuma JI, Okamura K (1990) Induction of Callus from mistletoe and interaction with its host cells. Bull Kyoto Univ Forests 62:261–269

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Gonzálvez J, García G, Galliano S, Dominghini A, Urli L, Monti J, Ronco MT, Frances D, Wagner M, Carnovale C, Luquita A (2017) The enriched proanthocyanidin extract of Ligaria cuneifolia shows a marked hypocholesterolemic effect in rats fed with cholesterol-enriched diet. Recent Pat Endocr Metab Immune Drug Discov 11(1):47–53

    Article  CAS  PubMed  Google Scholar 

  • Hall PJ, Letham DS, Barlow BA (1987) The influence of hormones on development of Amyema seedlings cultured in vitro. In: Weber HC, Forstreuter W (eds) Proceedings of the 4th International Symposium on Parasitic Flowering Plants. Philips University, Marburg, pp 285–291

    Google Scholar 

  • Ishrad M, Rizwan HM, Debnath B, Anwar M, Li M, Liu S, He B, Qiu D (2018) Ascorbic acid controls lethal browning and pluronic F-68 promotes high-frequency multiple shoot regeneration from coltyldonary node explant of okra (Abelmoschus esculentus L.). HortScience 53(2):183–190

    Article  Google Scholar 

  • Johri BM, Bajaj YPS (1962) Behaviour of Mature Embryos of Dendrophthoe falcata (l.F) Ettingsh in vitro. Nature 193:194–195

    Article  Google Scholar 

  • Johri BM, Bajaj YPS (1964) Growth of embryos of Amyema, Anylotheca, and Scurrula on synthetic media. Nature 204:1220–1221

    Article  Google Scholar 

  • Karunaratne MLWOM, Peries SE, Egodawatta WCP (2014) Callus induction and organogenesis from leaf explants of Tectona grandis. Ann Biol Res 5(4):74–82

    Google Scholar 

  • Khana P, Staba J (1968) Antimicrobials from plant tissue cultures. Lloydia 31:180–189

    Google Scholar 

  • Kim SW, Ko SM, Liu JR (2008) In vitro seed germination and callus formation on flower bud of Korean mistletoe [Viscum album L. var. cololatum (Kom.) Ohwi]. J Plant Biotechnol 35:47–53

    Article  Google Scholar 

  • Lee KP, Lee DW (2013) The Identification of in Vitro Production of Lectin from Callus Cultures of Korean Mistletoe (Viscum album L. var. coloratum). Biosci Biotechnol Biochem 77(4):884–887

    Article  CAS  PubMed  Google Scholar 

  • Majid I, Muhammad J, Rizwan R, Syed ZU, Muhammad SI, Misbah R, Salman M (2014) Effect of plant growth regulators on callus formation in potato. J Agri Food Appl Sci 2:77–81

    Google Scholar 

  • Martínez GJ (2010) Las plantas en la medicina tradicional de las Sierras de Córdoba. Un recorrido por la cultura campesina de Paravachasca y Calamuchita, Ediciones del Copista, p 212

    Google Scholar 

  • McHugh ML (2013) The chi square test of independence. Biochemia Medica 23(2):143–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Nag KK, Johri BM (1976) Experimental morphogenesis of the embryo of Dendrophthoe, Taxillus, and Nuytsia. Bot Gaz 37:378–390

    Article  Google Scholar 

  • Ndakidemi CF, Mneney E, Ndakidemi PA (2014) Effects of ascorbic acid in controlling lethal browning in in vitro culture of Brachylaena huillensis using nodal segments. Am J Plant Sci 5(1):5

    Article  CAS  Google Scholar 

  • Nigra HM, Caso O, Giulietti AM (1987) Production of solasodine by calli from different parts of Solanum eleagnifolium Cav. plants. Plant Cell Rep 6:135–137

    CAS  PubMed  Google Scholar 

  • Ohofeghara FA (1971) The effects of growth substances on the growth of Tapinanthus bauguensis (Loranthaceae) in vitro. Am Bot 36:563–570

    Article  Google Scholar 

  • Payne G, Bringi V, Prince C, Shuler M (1991) Quantifying growth and product synthesis: kinetics and stoichiometry. In: Michael S (ed) Plant cell and tissue culture in liquid systems. Hanser/Oxford University Press, Oxford, pp 47–70

    Google Scholar 

  • R Core Team (2018). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  • RStudio Team (2018). RStudio: Integrated Development for R. RStudio, Inc., Boston http://www.rstudio.com/

  • Ram RL, Singh MPN (1991) In vitro haustoria regeneration from embryo and in vitro-formed leaf callus cultures in Dendrophthoe falcata (L.f.) Ettings. Adv Plant Sci 4:48–53

    Google Scholar 

  • Rousset A, Simier P, Fer A (2003) Characterization of simple in vitro cultures of Striga hermonthica suitable for metabolic studies. Plant Biol 5:265–273

    Article  CAS  Google Scholar 

  • Rustán JJ, Balseiro D, Degrange FJ, Halpern K, Sferco ME, Luna ML, Giudice GE (2003) Características estructurales de los haustorios de Ligaria cuneifolia (Loranthaceae) de Argentina. Bol Soc Arg Bot 38:107–108

    Google Scholar 

  • Scarpa GF, Montani MC (2011) Etnobotánica médica de las “ligas” (Loranthaceae sensu latu) entre indígenas y criollos de Argentina. Dominguezia 27(2):5–19

    Google Scholar 

  • Sharpe D (2015) Your chi square test is statistically significant: now what? Pract Assess Res Eval 20(8):1–10

    Google Scholar 

  • Soberón JR, Sgariglia MA, Dip Maderuelo MR, Andina ML, Sampietro DA, Vattuone MA (2014) Antibacterial activities of Ligaria cuneifolia and Jodina rhombifolia leaf extracts against phytopathogenic and clinical bacteria. J Biosci Bioeng 118(5):599–605

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Dwivedi UN (2001) Plant regeneration from callus of Cuscuta reflexa—an angiospermic parasite– and modulation of catalase and peroxidase activity by salicylic acid and naphthalene acetic acid. Plant Physiol Biochem 39:529–538

    Article  CAS  Google Scholar 

  • Stat-Ease, Inc. (2018). Design-Expert Trial (version 11.0.6.0 64-bit)

  • Trigiano RN (2011) Chapter 12-Propagation of shoot culture. In: Trigiano RN, Gray DJ (eds) Plant tissue culture, development and biotechnology. CRC Press Taylor & Francis Group, Boca Raton, pp 181–192

    Google Scholar 

  • Varela BG, Fernández T, Taira C, Cerdá Zolezzi P, Ricco RA, Caldas López E, Álvarez E, Gurni AA, Hajos S, Wagner ML (2001) El “muérdago criollo”, Ligaria cuneifolia (R. et P.) Tiegh -Loranthaceae- Desde el uso popular hacia el estudio de los efectos farmacológico. Dominguezia 17(1):31–50

    Google Scholar 

  • Vázquez y Novo SP, Wagner ML, Gurni AA, Rondina RVD (1989) Importancia Toxicológica de la presencia de sustancias aminadas en ejemplares de Ligaria cuneifolia var. cuneifolia colectados en diferentes áreas de la República Argentina. Acta Farmacéutica Bonaerense 8(1):23–29

    Google Scholar 

  • White PR (1963) The cultivation of animal and plant cells. Ronald Press, New York

    Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Sabrina Flor for her assistance in the mass spectrometry analysis (Pharmaceutical Technology Department of the Faculty of Pharmacy and Biochemistry from the University of Buenos Aires), Dr. Javier Calcagno (CONICET/CEBBAD) for his advice regarding the statistical analysis, Dr. Chana Pilberg (Universidad Maimónides) for kindly providing us from plant material from Merlo, and M. Julian Schecter for his advice and careful revision of English. This work was supported by Fondo Nacional de Ciencia y Tecnología (FONCyT), Ministerio de Ciencia, Tecnología e Innovación Productiva from Argentina (PICT2015-2024), Universidad de Buenos Aires, and Universidad Maimónides. M A Alvarez and M Laguia-Becher are researchers from CONICET, MVR has a scholarship from CONICET-Universidad Maimónides, and MLB has a scholarship from FONCyT.

Author information

Authors and Affiliations

Authors

Contributions

MVR and MLB carried out the experiments and participated in drafting the manuscript; CC and FB carried out experiments; ML-B and CD participated in the analysis of the results; AP participated in selecting, collecting, and classifying the plant material; LUS performed statistical analysis; MLW, RAR and MAA initiated the project and supervised the work throughout, MAA also drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. A. Álvarez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Sergio J. Ochatt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11240_2019_1615_MOESM1_ESM.docx

Supplementary material 1 (DOCX 19 kb). On line resource 1: Antioxidant treatments used for avoiding browning in Ligaria cuneifolia leaves in vitro cultures. Explants (n = 10) were washed with the antioxidants during 5 min, 15 min and 30 min. Then, explants were transferred to Petri dishes with White medium plus 2,4-d (4.5 µM).The treatments were performed in dark or light, with similar results in both cases. l-CysHCl: l-Cysteine hydrochloride monohydrate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricco, M.V., Bari, M.L., Bagnato, F. et al. Establishment of callus-cultures of the Argentinean mistletoe, Ligaria cuneifolia (R. et P.) Tiegh (Loranthaceae) and screening of their polyphenolic content. Plant Cell Tiss Organ Cult 138, 167–180 (2019). https://doi.org/10.1007/s11240-019-01615-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-019-01615-5

Keywords

Navigation