Skip to main content
Log in

Imbalance of water potential and photosynthetic efficiency in the parasitic relationship between Struthanthus flexicaulis and Baccharis dracunculifolia

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Hemiparasitic plants can reduce photosynthesis and alter the host plant’s foliar traits. This relationship may be more intense in ecosystems with nutritionally poor soil, such as the campo rupestre, known for its high endemism. This work evaluated the impact of a generalist hemiparasitic species (Struthanthus flexicaulis) on the physiology as well as physical and chemical traits of a native species (Baccharis dracunculifolia) frequently found in the campo rupestre. We planted twenty 60-day-old B. dracunculifolia individuals in a campo rupestre area. Two year after planting, during the 2019 dry season, we evaluated the water potential (Ψw), photosynthetic efficiency (PE), specific leaf area (SLA) and succulence (SU) of parasitized and non-parasitized host plants. These parameters were measured again in the dry season of 2020, when we also measured chlorophyll, nitrogen balance index (NBI) and phenolic content of leaves of the same individuals. Parasitized individuals had a higher Ψw and PE compared to non-parasitized individuals during the most critical period of the day (12:00 pm to 3:00 pm). However, towards the end of the day, parasitized individuals had lower Ψw and PE than non-parasitized ones. There was no effect of parasitism on SLA and SU. Parasitized plants had higher NBI and lower phenolic content than non-parasitized plants. We concluded that S. flexicaulis parasitism interfered in the physiology and chemical leaf traits of B. dracunculifolia. Parasitism, while momentarily increasing the PE and Ψw of parasitized individuals, can cause physiological imbalances, which could negatively affect the development and lead to the death of the host plant over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aukema JE, Martinez-del-Rio C (2002) Where does a fruit-eating bird deposit mistletoe seeds? Seed deposition patterns and an experiment. Ecology 83:3489–3496

    Article  Google Scholar 

  • Bahia TO, Zúñiga IG, Souza ML, et al (2015) Hemiparasitism effect on Baccharis dracunculifolia DC. and consequences to its major galling herbivore. Acta Bot Brasil 29:339–345

    Article  Google Scholar 

  • Barbosa M, Fernandes GW, Lewis OT, Morris RJ (2017) Experimentally reducing species abundance indirectly affects food web structure and robustness. J Anim Ecol 86:327–336

    Article  PubMed  Google Scholar 

  • Barbosa M, Monteiro GF, Fernandes GW (2021) Multitrophic and indirect interactions in the Baccharis dracunculifolia system. In Fernandes GW, Oki Y, Barbosa (eds) Baccharis: from evolutionary and ecological aspects to social uses and medicinal applications. Springer, Switzerland, pp 133–149

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Statist Softw 67:1–48

    Article  Google Scholar 

  • Bell TL, Adams MA (2011) Attack on all fronts: functional relationships between aerial and root parasitic plants and their woody hosts and consequences for ecosystems. Tree Physiol 31:3–15

    Article  CAS  PubMed  Google Scholar 

  • Brevedan RE, Egli DB (2003) Short periods of water stress during seed filling, leaf senescence, and yield of soybean. Crop Sci 43:2083–2088

    Article  Google Scholar 

  • Calvin CL, Wilson CA (2006) Comparative morphology of epicortical roots in Old and New World Loranthaceae with reference to root types, origin, patterns of longitudinal extension and potential for clonal growth. Flora 201:345–353

    Article  Google Scholar 

  • Cameron DD, Geniez JM, Seel WE, Irving LJ (2008) Suppression of host photosynthesis by the parasitic plant Rhinanthus minor. Ann Bot (Oxford) 101:573–578

    Article  CAS  Google Scholar 

  • Cirocco RM, Facelli JM, Watling JR (2020) The impact of a native hemiparasite on a major invasive shrub is affected by host size at time of infection. J Exp Bot 71:3725– 3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke CR, Timko MP, Yoder JI, Axtell MJ, Westwood JH (2019) Molecular dialog between parasitic plants and their hosts. Annual Rev Phytopathol 57:279–299

    Article  CAS  Google Scholar 

  • Conroy JP, Smillie RM, Kuppers M, Bevege DI, Barlow EW (1986) Chlorophyll a fluorescence and photosynthetic and growth responses of Pinus radiata to phosphorus deficiency, drought stress, and high CO2. Pl Physiol 81:423–429

    Article  CAS  Google Scholar 

  • Corrêa MP (2015) Solar ultraviolet radiation: properties, characteristics and amounts observed in Brazil and South America. Ann Brasil Dermatol 90:297–313

    Article  Google Scholar 

  • Cruz AF, da Silva G, Silva EF, de Soares FR, Santos JSG, Lira RM (2018) Stress index, water potentials and leaf succulence in cauliflower cultivated hydroponically with brackish water. Rev Brasil Engen Agric Ambient 9:622–627

    Article  Google Scholar 

  • Cuevas-Reyes P, Fernandes GW, Gonzalez-Rodriguez A, Pimenta M (2011) Effects of generalist and specialist parasitic plants (Loranthaceae) on the fluctuating asymmetry patterns of rupestrian host plants. Basic Appl Ecol 12:449–455

    Article  Google Scholar 

  • Didier DS, Ndongo D, Jules PR, Desiré TV, Henri F, Georges S, Akoa A (2008) Parasitism of host trees by the Loranthaceae in the region of Douala (Cameroon). Afrrican J Environm Sci Technol 2:371–378

    Google Scholar 

  • Echevarría-Zomeño S, Perez-de-Luque A, Jorrin J, Maldonado AM (2006) Pre-haustorial resistance to broomrape (Orobanche cumana) in sunflower (Helianthus annuus): cytochemical studies. J Exp Bot 57:4189–4200

    Article  PubMed  CAS  Google Scholar 

  • Espírito-Santo MM, Fernandes GW, Allain LR, Reis TRF (1999) Tannins in Baccharis dracunculifolia (Asteraceae): effects of seasonality, water availability and plant sex. Acta Bot Brasil 13:167–174

    Article  Google Scholar 

  • Fagundes M, Neves FS, Fernandes GW (2005) Direct and indirect interactions involving ants, insect herbivores, parasitoids, and the host plant Baccharis dracunculifolia (Asteraceae). Entomology 30:8–35

    Google Scholar 

  • Fernandes GW, Price PW (1988) Biogeographical gradients in galling species richness. Oecologia 76:161–167

    Article  PubMed  Google Scholar 

  • Fernandes GW (2016) (ed) Ecology and conservation of mountaintop grasslands in Brazil. Springer Publisher, Switzerland

    Book  Google Scholar 

  • Fernandes GW, Bahia TO, Almeida HA, Conceição AA, Loureiro CG, Luza GR, Neves ACO, Oki Y, Pereira GCN, Pirani JR, Viana PL, Negreiros D (2020) Floristic and functional identity of rupestrian grasslands as a subsidy for environmental restoration and policy. Ecol Complex 43:e100833

    Article  Google Scholar 

  • Fernandes GW, Barbosa NPU, Negreiros D, Paglia AP (2014) Challenges for the conservation of vanishing megadiverse rupestrian grasslands. Nat & Conservation 12:162–165

    Article  Google Scholar 

  • Frost DL, Gurney AL, Press MC, Scholes JD (1997) Striga hermonthica reduces photosynthesis in sorghum: the potential importance of stomatal limitations and a potential role for ABA? Pl Cell Environm 20:483–492

  • Gao FL, Che XX, Yu FH, Li JM (2019) Cascading effects of nitrogen, rhizobia and parasitism via a host plant. Flora 251:62–67

    Article  Google Scholar 

  • Glatzel G, Geils BW (2009) Mistletoe ecophysiology: host-parasite interactions. Botany 87:10–15

    Article  CAS  Google Scholar 

  • Gomes V, Fernandes GW (2002) Germinação de aquênios de Baccharis dracunculifolia D.C. (Asteraceae). Acta Bot Brasil 16:421–427

    Article  Google Scholar 

  • Graffis AM, Kneitel JM (2015) A parasitic plant increases native and exotic plant species richness in vernal pools. AoB Plants 7:1–10

    Article  CAS  Google Scholar 

  • Grewell BJ (2008) Parasite facilitates plant species coexistence in a coastal wetland. Ecology 89:1481–1488

    Article  PubMed  Google Scholar 

  • Guerra TJ, Pizo MA (2014) Asymmetrical dependence between a Neotropical mistletoe and its avian seed disperser. Biotropica 46:285–293

    Article  Google Scholar 

  • Guerra TJA (2005) Componentes quantitativos e qualitativos da dispersão de sementes de Struthanthus flexicaulis (Loranthaceae) em uma área de campo rupestre do sudeste brasileiro. Dissertação de mestrado Universidade Estadual Paulista, Rio Claro, 64 pp

  • Gurney AL, Ransom JK, Press MC (1995) The parasitic angiosperm Striga hermonthica can reduce photosynthesis of its sorghum and maize hosts in the field. J Exp Bot 46:1817–1823

    Article  CAS  Google Scholar 

  • Hariri EB, Sallé G, Andary C (1991) Involvement of flavonoids in the resistance of two poplar cultivars to mistletoe (Viscum album L.). Protoplasma 162:20–26

    Article  CAS  Google Scholar 

  • Hegenauer V, Körner M, Albert M (2017) Plants under stress by parasitic plants. Curr Opin Pl Biol 38:34–41

    Article  Google Scholar 

  • Ibrahim MH, Jaafar HZE (2013) Abscisic acid induced changes in production of primary and secondary metabolites, photosynthetic capacity, antioxidant capability, antioxidant enzymes and lipoxygenase inhibitory activity of Orthosiphon stamineus Benth. Molecules 18:7957–7976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Julião GR, Fernandes GW, Negreiros D, Bedê L, Araújo RC (2005) Insetos galhadores associados a duas espécies de plantas invasoras de áreas urbanas e peri-urbanas. Rev Bras Entomol 49:97–106

    Article  Google Scholar 

  • Kandil FE, Grace MH, Seigler DS, Cheeseman JM (2004) Polyphenolics in Rhizophora mangle L. leaves and their changes during leaf development and senescence. Trees 18:518–528

    Article  CAS  Google Scholar 

  • Krause GH, Weis E. (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annual Rev Pl Physiol Pl Molec Biol 42:313–349

    Article  CAS  Google Scholar 

  • Kubov M, Fleischer P Jr, Rozkošný J, Kurjak D, Konôpková A, Galko J, Húdoková H, Lalík M, Rell S, Pittner J, Fleischer P. (2020) Drought or severe drought? Hemiparasitic yellow mistletoe (Loranthus europaeus) amplifies drought stress in sessile oak trees (Quercus petraea) by altering water status and physiological responses. Water 12:2985

    Article  CAS  Google Scholar 

  • Lincoln T, Zeiger E (2013) Fisiologia vegetal. 5ª edição, Artmed, Porto Alegre

  • Lopes RM, Oliveira TD, Nagem TJ, Pinto ADS (2010) Flavonóides. Biotecnol Ci Desenvolv 3–14

  • López-de-Buen L, Ornelas JF (2002) Host compatibility of the cloud forest mistletoe Psittacanthus schiedeanus (Loranthaceae) in central Veracruz, México. Amer J Bot 89:95–102

    Article  Google Scholar 

  • Lozano-Baena MD, Prats E, Moreno MT, Rubiales D, Perez-de-Luque A (2007) Medicago truncatula as a model for nonhost resistance in legume-parasitic plant interactions. Pl Physiol 145:437–449

  • Lüttge U, Haridasan M, Fernandes GW, Mattos ES, Trimborn P, Franco AC, Caldas LS, Ziegler H (1998) Photosynthesis of mistletoes in relation to their hosts at various sites in tropical Brazil. Trees 12:167–174

    Article  Google Scholar 

  • Madeira JA, Fernandes GW (1999) Reproductive phenology of sympatric Chamaecrista taxa of Chamaecrista (Leguminosae) in Serra do Cipó, Brazil. J Trop Ecol 15:463479

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Meinzer FC, Woodruff DR, Shaw DC (2004) Integrated responses of hydraulic architecture, water and carbon relations of western hemlock to dwarf mistletoe infection. Pl Cell Environm 27:937–946

    Article  Google Scholar 

  • Monteiro GF, Novais S, Barbosa M, Antonini Y, Passos MFO, Fernandes GW (2020) The mistletoe Struthanthus flexicaulis reduces dominance and increases diversity of plants in campo rupestre. Flora 271:151690

    Article  Google Scholar 

  • Mourão FA, Jacobi CM, Figueira JEC, Batista EKL (2009) Effects of the parasitism of Struthanthus flexicaulis (Mart.) Mart. (Loranthaceae) on the fitness of Mimosa calodendron Mart. (Fabaceae), an endemic shrub from rupestrian fields over ironstone outcrops, Minas Gerais State, Brazil. Acta Bot Brasil 23:820–825

    Article  Google Scholar 

  • Mourão FA, Pinheiro RBP, Jacobi CM, José Figueira EC (2016) Host preference of the hemiparasite Struthanthus flexicaulis (Loranthaceae) in ironstone outcrop plant communities southeast Brazil. Acta Bot Brasil 30:41–46

    Article  Google Scholar 

  • Muraoka H, Tang Y, Terashima I, Koizumi K, Washitani I (2000) Contributions of diffusional limitation, photoinhibition and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in natural high light. Pl Cell Environm 23:235–250

    Article  CAS  Google Scholar 

  • Murcia G, Fontana A, Pontin M, Baraldi R, Bertazza G, Piccoli PN (2017) ABA and GA3 regulate the synthesis of primary and secondary metabolites related to alleviation from biotic and abiotic stresses in grapevine. Phytochemistry 135:34–52

    Article  CAS  PubMed  Google Scholar 

  • Negreiros D, Esteves D, Fernandes GW, Berbara RLL, Oki Y, Vichiato M, Chalub C (2014) Growth-survival tradeoff in the widespread tropical shrub Baccharis dracunculifolia (Asteraceae) in response to a nutrient gradient. Trop Ecol 55:167–176

    Google Scholar 

  • Norton DA, Carpenter MA (1998) Mistletoes as parasites: host specificity and speciation. Trends Ecol Evol 13:101–105

    Article  CAS  PubMed  Google Scholar 

  • Oliveira R, Galvão HC, Campos MCR, Eller CB, Pearse SJ, Lambers H (2015) Mineral nutrition of campos rupestres plant species on contrasting nutrient-impoverished soil types. New Phytol 205:1183–1194

    Article  CAS  PubMed  Google Scholar 

  • Pennings SC, Simpson JC (2008) Like herbivores, parasitic plants are limited by host nitrogen content. Pl Ecol 196:245–250

    Article  Google Scholar 

  • Perea R, Cunha JS, Spadeto C, Gomes V M, Moura AL, Rúbia B, Fernandes GW (2019) Nurse shrubs to mitigate plant invasion along roads of montane Neotropics. Ecol Engin 136:193–196

    Article  Google Scholar 

  • Perea R, Peláez M, Fernandes GW (2021) Baccharis as nurse plants. In Fernandes GW, Oki Y, Barbosa M (eds) Baccharis: from evolutionary and ecological aspects to social uses and medicinal applications. Springer, Switzerland, pp 171–184

    Chapter  Google Scholar 

  • Press MC, Graves JD (1995) Parasitic Plants. Chapman & Hall, London

    Google Scholar 

  • Press MC, Scholes JD, Watling JR (1999) Parasitic plants: physiological and ecological interactions with their hosts. In Press MC, Scholes JD, Barker MG (eds) Physiological plant ecology. Blackwell Scientific, Oxford, pp 175–197

    Google Scholar 

  • Prider J, Watling J, Facelli JM (2008) Impacts of a native parasitic plant on an introduced and a native host species: implications for the control of an invasive weed. Ann Bot (Oxford) 103:107–115

    Article  Google Scholar 

  • R Development Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rasband WS (2007) ImageJ. US National Institutes of Health, Maryland

    Google Scholar 

  • Ribeiro-Mendes HN, Marques ESA, Silva IM, Fernandes GW (2002) Influence of host-plant sex and habitat on survivorship of insect galls within the geographical range of the host-plant. Trop Zool 15:5–15

    Article  Google Scholar 

  • Rizzini CT (1997) Tratado de fitogeografia do Brasil: aspectos ecológicos, sociológicos e florísticos. Ed. Âmbito Cultural, Rio de Janeiro

  • Runyon JB, Mescher MC, De Moraes CM (2006) Volatile chemical cues guide host location and host selection by parasitic plants. Science 313:1964–1967

    Article  CAS  PubMed  Google Scholar 

  • Scatena VL, Scremin-Dias E (2003) Parênquima, colênquima e esclerênquima. In Appezzato-da-Glória B, Carmello-Guerreiro SM (eds) Anatomia vegetal. UFV, Viçosa

    Google Scholar 

  • Shaul O (2002) Magnesium transport and function in plants: the tip of the iceberg. BioMetals 15:307–321

    Article  Google Scholar 

  • Shen H, Prider JN, Facelli JM, Watling JR (2010) The influence of the hemiparasitic angiosperm Cassytha pubescens on photosynthesis of its host Cytisus scoparius. Funct Pl Biol 37:14–21

    Article  CAS  Google Scholar 

  • Silva LR, Martins LV, Calou IBF, Meireles de Deus MS, Ferreira PMP, Peron AP (2015) Flavonóides: constituição química, ações medicinais e potencial tóxico. Acta Toxicol Argent 23:36–43

    Google Scholar 

  • Taylor A, Martin J, Seel WE (1996) Physiology of the parasitic association between maize and witchweed (Striga hermonthica): Is ABA involved? J Exp Bot 47:1057–1065

    Article  CAS  Google Scholar 

  • Tennakoon KU, Pate JS (1996) Effects of parasitism by a mistletoe on the structure and functioning of branches of its host. Pl Cell Environm 19:517–528

    Article  Google Scholar 

  • Těšitel J, Plavcová L, Cameron DD (2010) Interactions between hemiparasitic plants and their hosts. Pl Signal Behav 5:1072–1076

    Article  Google Scholar 

  • Těšitel J, Tesitelová T, Fisher JP, Leps J, Cameron DD (2015) Integrating ecology and physiology of root-hemiparasitic interaction: interactive effects of abiotic resources shape the interplay between parasitism and autotrophy. New Phytol 205:350–360

    Article  PubMed  Google Scholar 

  • Trewavas AJ, Jones HG (1991) An assessment of the role of ABA in plant development. In Davies WJ, Jones HG (eds) Abscisic acid: physiology and biochemistry. BIOS Scientific Publishers, Oxford, pp 169–188

    Google Scholar 

  • Velloso MAL, Abreu IN, Mazzafera P (2009) Indução de metabólitos secundários em plântulas de Hypericum brasiliense Choisy crescendo in vitro. Acta Amazon 2:267–272

    Article  Google Scholar 

  • Vendramini F, Díaz S, Gurvich DE, Wilson PJ, Thompson K, Hodgson JG (2002) Leaf traits as indicators of resource-use strategy in floras with succulent species. New Phytol 154:147–157

    Article  Google Scholar 

  • Waraich EA, Ahmad R, Ashraf MY (2011) Role of mineral nutrition in alleviation of drought stress in plants. Austral J Crop Sci 5:764–777

    CAS  Google Scholar 

  • Watling JR, Press MC (2001) Impacts of infection by parasitic angiosperms on host photosynthesis. Pl Biol 3:244–250

    Article  CAS  Google Scholar 

  • Wilson J, Thompson K, Hodgson JG (1999) Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol 143:155–162

    Article  Google Scholar 

Download references

Acknowledgments

We thank and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for funding this Long-Term Ecological Research (PELD-CRSC-17 – 441515/ 2016-9) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais – Fapemig (PELD-APQ-04814-17). We thank the Reserva Vellozia, Parque Nacional da Serra do Cipó, Pousada Serra Morena, Pouso Pedra do Elefante, Planta Ltda, and Industria Textil Cedro for the logistic. We also thank Daniel Vasconcellos for the language revision and Antonio J. R Cruz for the photographs. This study is in partial fulfilment of the requirements for a Doctor in Ecology, Conservação e Manejo da Vida Silvestre at Universidade Federal de Minas Gerais (UFMG). CAPES provided scholarships to GFM, MB and SN. CNPq provided scholarships to YA, GWF, MGCF and DB, and FAPEMIG provided a scholarship to YO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graziella F. Monteiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteiro, G.F., Boanares, D., Novais, S. et al. Imbalance of water potential and photosynthetic efficiency in the parasitic relationship between Struthanthus flexicaulis and Baccharis dracunculifolia. Folia Geobot 57, 71–82 (2022). https://doi.org/10.1007/s12224-022-09410-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-022-09410-5

Keywords

Navigation