Skip to main content
Log in

From Eastern Arc Mountains to extreme sexual dimorphism: systematics of the enigmatic assassin bug genus Xenocaucus (Hemiptera: Reduviidae: Tribelocephalinae)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The Eastern Arc Mountains (EAM) have long been recognized as an area of extraordinary endemic biodiversity but have remained understudied compared to other biodiversity hotspots. The tribelocephaline assassin bug genus Xenocaucus China & Usinger, 1949, currently comprises two species known from the Uluguru Mountains of the EAM and Bioko Island in the Gulf of Guinea. Both species are based on single apterous and apparently eyeless female specimens. Based on collections resulting from extensive leaf litter sampling in Tanzania and Ethiopia, we here describe six new species, five based on females (Xenocaucus chomensis, n. sp., Xenocaucus kimbozensis, n. sp., Xenocaucus nguru, n. sp., Xenocaucus rubeho, n. sp., and Xenocaucus uluguru, n. sp.) and Xenocaucus ethiopiensis, n. sp., for which we discovered a macropterous male with well-developed eyes in addition to the apterous females. Molecular phylogenetic analyses indicate that Xenocaucus ethiopiensis, n. sp., is the sister taxon to the Tanzanian clade and support morphology-based species concepts. Divergence dating shows that diversification in the Tanzanian clade started ∼15 mya, with the youngest species-level split occurring ∼8 mya. Three species occur across multiple mountain ranges in the EAM or occur also on Mt. Hanang, and biogeographic analyses suggest a complex history of Xenocaucus in East Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Axelrod, D. I., & Raven, P. H. (1978). Late Cretaceous and Tertiary vegetation history of Africa. In M. J. A. Werger (Ed.), Biogeography and ecology of Southern Africa (pp. 77–130). Netherlands: Springer http://link.springer.com/chapter/10.1007/978-94-009-9951-0_5. Accessed 12 May 2016.

    Chapter  Google Scholar 

  • Beresford, P., Fjeldså, J., & Kiure, J. (2004). A new species of akalat (sheppardia) narrowly endemic in the eastern arc of Tanzania. The Auk, 121(1), 23–34. doi:10.1642/0004-8038(2004)121[0023:ANSOAS]2.0.CO;2.

    Article  Google Scholar 

  • Blackburn, D. C., & Measey, G. J. (2009). Dispersal to or from an African biodiversity hotspot? Molecular Ecology, 18(9), 1904–1915. doi:10.1111/j.1365-294X.2009.04156.x.

    Article  CAS  PubMed  Google Scholar 

  • Bocák, L., Grebennikov, V. V., & Sklenarova, K. (2014). Cautires apterus, a new species and the first record of wingless male Lycidae (Coleoptera) discovered in the North Pare Mountains, Tanzania. Annales Zoologici, 64(1), 1–7. doi:10.3161/000345414X680500.

    Article  Google Scholar 

  • Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., et al. (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10(4), e1003537. doi:10.1371/journal.pcbi.1003537.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowie, R. C., Fjeldså, J., Hackett, S. J., Crowe, T. M., & Fleischer, R. C. (2004). Systematics and biogeography of double-collared sunbirds from the Eastern Arc Mountains, Tanzania. The Auk, 121(3), 660–681.

    Article  Google Scholar 

  • Bowie, R. C. K., Fjeldså, J., Hackett, S. J., Bates, J. M., & Crowe, T. M. (2006). Coalescent models reveal the relative roles of ancestral polymorphism, vicariance, and dispersal in shaping phylogeographical structure of an African montane forest robin. Molecular Phylogenetics and Evolution, 38(1), 171–188. doi:10.1016/j.ympev.2005.06.001.

    Article  CAS  PubMed  Google Scholar 

  • Burgess, N. D., Butynski, T. M., Cordeiro, N. J., Doggart, N. H., Fjeldsa, J., Howell, K. M., et al. (2007). The biological importance of the Eastern Arc Mountains of Tanzania and Kenya. Biological Conservation, 134(2), 209–231.

    Article  Google Scholar 

  • China, W. E., & Usinger, R. L. (1949). A new genus of Tribelocephalinae from Fernando Poo (Hemiptera Reduviidae). Annali del Museo Civico di Storia Naturale di Genova, 64, 43–47.

    Google Scholar 

  • Couvreur, T. L., Chatrou, L. W., Sosef, M. S., & Richardson, J. E. (2008). Molecular phylogenetics reveal multiple tertiary vicariance origins of the African rain forest trees. BMC Biology, 6, 54. doi:10.1186/1741-7007-6-54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis, A. L. V., Scholtz, C. H., & Harrison, J. D. G. (2001). Cladistic, phenetic and biogeographical analysis of the flightless dung beetle genus, Gyronotus van Lansberge (Scarabaeidae: Scarabaeinae), in threatened eastern Afrotropical forests. Journal of Natural History, 35(11), 1607–1625. doi:10.1080/002229301317092351.

    Article  Google Scholar 

  • Davis, C. C., Bell, C. D., Fritsch, P. W., & Mathews, S. (2002). Phylogeny of Acridocarpus-Brachylophon (Malpighiaceae): implications for tertiary tropical floras and Afroasian biogeography. Evolution; International Journal of Organic Evolution, 56(12), 2395–2405.

    Article  CAS  PubMed  Google Scholar 

  • Dimitrov, D., Nogués-Bravo, D., & Scharff, N. (2012). Why do tropical mountains support exceptionally high biodiversity? The Eastern Arc mountains and the drivers of Saintpaulia diversity. PloS One, 7(11), e48908. doi:10.1371/journal.pone.0048908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fjeldså, J., & Bowie, R. C. K. (2008). New perspectives on the origin and diversification of Africa’s forest avifauna. African Journal of Ecology, 46(3), 235–247. doi:10.1111/j.1365-2028.2008.00992.x.

    Article  Google Scholar 

  • Forero, D., Berniker, L., & Weirauch, C. (2013). Phylogeny and character evolution in the bee-assassins (Insecta: Heteroptera: Reduviidae). Molecular Phylogenetics and Evolution, 66(1), 283–302. doi:10.1016/j.ympev.2012.10.002.

    Article  CAS  PubMed  Google Scholar 

  • Forthman, M., & Weirauch, C. (2016). Phylogenetics and biogeography of the endemic Madagascan millipede assassin bugs (Hemiptera: Reduviidae: Ectrichodiinae). Molecular Phylogenetics and Evolution, 100, 219–233.

    Article  PubMed  Google Scholar 

  • Forthman, M., Chłond, D., & Weirauch, C. (2016). Taxonomic monograph of the endemic millipede assassin bug fauna of Madagascar (Hemiptera: Reduviidae: Ectrichodiinae). Bulletin of the American Museum of Natural History, 400, 1–152. doi:10.1206/amnb-928-00-01.1.

    Article  Google Scholar 

  • Gizaw, A., Brochmann, C., Nemomissa, S., Wondimu, T., Masao, C. A., Tusiime, F. M., et al. (2016). Colonization and diversification in the African “sky islands”: insights from fossil-calibrated molecular dating of Lychnis (Caryophyllaceae). The New Phytologist, 211(2), 719–734. doi:10.1111/nph.13937.

    Article  CAS  PubMed  Google Scholar 

  • Gordon, E. R. L., & Weirauch, C. (2016). Efficient capture of natural history data reveals prey conservatism of cryptic termite predators. Molecular Phylogenetics and Evolution, 94(Pt A), 65–73. doi:10.1016/j.ympev.2015.08.015.

    Article  PubMed  Google Scholar 

  • Gravlund, P. (2002). Molecular phylogeny of Tornier’s cat snake (Crotaphopeltis tornieri), endemic to East African mountain forests: biogeography, vicariance events and problematic species boundaries. Journal of Zoological Systematics and Evolutionary Research, 40, 46–56.

    Article  Google Scholar 

  • Grebennikov, V. V. (2015). Wingless Paocryptorrhinus (Coleoptera: Curculionidae) rediscovered in Tanzania: synonymy, four new species and a mtdnA phylogeography. Bonn zoological Bulletin, 64, 1–15.

    Google Scholar 

  • Hemp, C., Heller, K.-G., Warchalowska-Sliwa, E., & Hemp, A. (2013). The genus Aerotegmina (Orthoptera, Tettigoniidae, Hexacentrinae): chromosomes, morphological relations, phylogeographical patterns and description of a new species. Organisms Diversity & Evolution, 13(4), 521–530. doi:10.1007/s13127-013-0133-7.

    Article  Google Scholar 

  • Hemp, C., Heller, K.-G., Warchałowska-Śliwa, E., Grzywacz, B., & Hemp, A. (2014). Ecology, acoustics and chromosomes of the East African genus Afroanthracites Hemp & Ingrisch (Orthoptera, Tettigoniidae, Conocephalinae, Agraeciini) with the description of new species. Organisms Diversity & Evolution, 15(2), 351–368. doi:10.1007/s13127-014-0194-2.

    Article  Google Scholar 

  • Hwang, W. S., & Weirauch, C. (2012). Evolutionary history of assassin bugs (Insecta: Hemiptera: Reduviidae): insights from divergence dating and ancestral state reconstruction. PloS One, 7(9), e45523. doi:10.1371/journal.pone.0045523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa, T., Cai, W., & Tomokuni, M. (2015). The assassin bug subfamily Tribelocephalinae (Hemiptera: Heteroptera: Reduviidae) from Japan, with descriptions of eight new species in the genera Opistoplatys and Abelocephala. Zootaxa, 3936(2), 151–180.

    Article  PubMed  Google Scholar 

  • Jacobs, B. F., Kingston, J. D., & Jacobs, L. L. (1999). The origin of grass-dominated ecosystems. Annals of the Missouri Botanical Garden, 86(2), 590–643. doi:10.2307/2666186.

    Article  Google Scholar 

  • Jeannel, R. (1919). Insectes Hemipteres, iii. Henicocephalidae et Reduviidae. In: Voyage de Ch. Alluaud et R. Jeannel en Africa Orientale (1911–1912) (Vol. Insectes Hemipteres, 3, pp. 133–313). Paris.

  • Jon Fjeldså, J. K. (2010). Distribution of highland forest birds across a potential dispersal barrier in the Eastern Arc Mountains of Tanzania. Steenstrupia, 32(1), 1–43.

    Google Scholar 

  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. doi:10.1093/molbev/mst010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson, L. P. (2010). The discordance of diversification: evolution in the tropical-montane frogs of the Eastern Arc Mountains of Tanzania. Molecular Ecology, 19(18), 4046–4060.

    Article  PubMed  Google Scholar 

  • Loader, S. P., Sara Ceccarelli, F., Menegon, M., Howell, K. M., Kassahun, R., Mengistu, A. A., et al. (2014). Persistence and stability of Eastern Afromontane forests: evidence from brevicipitid frogs. Journal of Biogeography, 41(9), 1781–1792. doi:10.1111/jbi.12331.

    Article  Google Scholar 

  • Loader, S. P., Lawson, L. P., Portik, D. M., & Menegon, M. (2015). Three new species of spiny throated reed frogs (Anura: Hyperoliidae) from evergreen forests of Tanzania. BMC Research Notes, 8, 167. doi:10.1186/s13104-015-1050-y.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lovett, J. C., Wasser, S. K., et al. (2008). Biogeography and ecology of the rain forests of eastern Africa. Cambridge: Cambridge University Press http://www.cabdirect.org/abstracts/20093194721.html. Accessed 24 August 2015.

    Google Scholar 

  • Lovett, J. C., Marchant, R., Taplin, J., & Kuper, W. (2005). The oldest rainforests in Africa: stability or resilience for survival and diversity? In J. L. Gittleman (Ed.), Phylogeny and conservation. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511614927.009.

    Google Scholar 

  • Maldonado, J. (1990). Systematic catalogue of the Reduviidae of the World. Mayagüez: Caribbean Journal of Science, Special publication No. 1, University of Puerto Rico.

  • Maldonado, J. (1996). New taxa and key to the tribes and genera in Tribelocephalinae Stål 1866 (Heteroptera: Reduviidae). Proceedings of the Entomological Society of Washington, 98(1), 138–144.

    Google Scholar 

  • Marshall, S. A. (2014). A review of the Afrotropical genus Aristobatina Verbeke (Diptera: Micropezidae: Taeniapterinae), with descriptions of four new species from the Eastern Arc Mountains of Tanzania. African Invertebrates, 55(1), 143–155. doi:10.5733/afin.055.0108.

    Article  Google Scholar 

  • Matzke, N. J. (2014). Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Systematic Biology, 63, 951–970. doi:10.1093/sysbio/syu056.

    Article  PubMed  Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858.

    Article  CAS  PubMed  Google Scholar 

  • Pócs, T. (1998). Bryophyte diversity along the eastern arc. Journal of East African Natural History, 87(1), 75–84. doi:10.2982/0012-8317(1998)87[75:BDATEA]2.0.CO;2.

    Article  Google Scholar 

  • Rédei, D. (2007). A new genus of tribelocephaline assassin bugs from Borneo (Hemiptera: Heteroptera: Reduviidae). Zootaxa, 1465, 47–53.

    Google Scholar 

  • Ronquist, F. (1997). Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Systematic Biology, 46(1), 195–203. doi:10.1093/sysbio/46.1.195.

    Article  Google Scholar 

  • Roy, M. S. (1997). Recent diversification in African greenbuls (Pycnonotidae: Andropadus) supports a montane speciation model. Proceedings of the Royal Society B: Biological Sciences, 264(1386), 1337–1344. doi:10.1098/rspb.1997.0185.

    Article  PubMed Central  Google Scholar 

  • Schuh, R. T., & Slater, J. A. (1995). True bugs of the world (Hemiptera: Heteroptera): classification and natural history. In: True bugs of the world (p. i–xii, 1–336). Comstock Publishing Associates, Cornell University Press. ://ZOOREC:ZOOR13200000618.

  • Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. doi:10.1093/bioinformatics/btu033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Štys, P., & Baňař, P. (2013). Eastern Arc Mountains in Tanzania: Hic sunt Aenictopecheidae. The first genus and species of Afrotropical Aenictopecheidae (Hemiptera: Heteroptera: Enicocephalomorpha). European Journal of Entomology, 110(4), 677–688. doi:10.14411/eje.2013.091.

    Article  Google Scholar 

  • Vaidya, G., Lohman, D. J., & Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 27(2), 171–180. doi:10.1111/j.1096-0031.2010.00329.x.

    Article  Google Scholar 

  • Villiers, A. (1943). Morphologie et systématic des Tribelocephalitae africains. Revue Francaise d’Entomologie, 10, 1–28.

    Google Scholar 

  • Villiers, A. (1948). Hemipteres Re-duviides de l’Afrique Noire. Faune de l’Empire Francais, 9, 1–488.

    Google Scholar 

  • Villiers, A. (1960). Hemiptera Reduviidae Tribelocephalinae et Emesinae. Mission zoologique de l’I.R.S.A.C. en Afrique orientale (P. Basilewsky et N. Leleup, 1957). Annales du Musee du Congo Belge Tervuren Ser 8vo Sci Zool, 81, 453–458.

    Google Scholar 

  • Weirauch, C. (2008). Cladistic analysis of Reduviidae (Heteroptera: Cimicomorpha) based on morphological characters. Systematic Entomology, 33(2), 229–274. doi:10.1111/j.1365-.

    Article  Google Scholar 

  • Weirauch, C. (2010). Tribelocodia ashei, new genus and new species of Reduviidae (Insecta: Hemiptera), has implications on character evolution in Ectrichodiinae and Tribelocephalinae. Insect Systematics & Evolution, 41, 103–122.

    Article  Google Scholar 

  • Weirauch, C., & Munro, J. B. (2009). Molecular phylogeny of the assassin bugs (Hemiptera: Reduviidae), based on mitochondrial and nuclear ribosomal genes. Molecular Phylogenetics and Evolution, 53(1), 287–299. doi:10.1016/j.ympev.2009.05.039.

    Article  CAS  PubMed  Google Scholar 

  • Weirauch, C., Bérenger, J. M., Berniker, L., Forero, D., Forthman, M., Frankenberg, S., et al. (2014). An illustrated identification key to assassin bug subfamilies and tribes (Hemiptera: Reduviidae). Canadian Journal of Arthropod Identification, 26, 1–115.

    Google Scholar 

  • Wygodzinsky, P. (1966). A monograph of the Emesinae (Reduviidae, Hemiptera). Bulletin of the American Museum of Natural History, 133, 1–614.

    Google Scholar 

  • Yessoufou, K., Daru, B. H., & Davies, T. J. (2012). Phylogenetic patterns of extinction risk in the eastern arc ecosystems, an African biodiversity hotspot. PloS One, 7(10), e47082. doi:10.1371/journal.pone.0047082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, Y., Harris, A. J., Blair, C., & He, X. (2015). RASP (reconstruct ancestral state in phylogenies): a tool for historical biogeography. Molecular Phylogenetics and Evolution, 87, 46–49. doi:10.1016/j.ympev.2015.03.008.

    Article  PubMed  Google Scholar 

  • Zhang, G., & Weirauch, C. (2011). Matching dimorphic sexes and immature stages with adults: resolving the systematics of the Bekilya group of Malagasy assassin bugs (Hemiptera: Reduviidae: Peiratinae). Systematic Entomology, 36(1), 115–138. doi:10.1111/j.1365-3113.2010.00551.x.

    Article  Google Scholar 

  • Zhang, J., Weirauch, C., Zhang, G., & Forero, D. (2015). Molecular phylogeny of Harpactorinae and Bactrodinae uncovers complex evolution of sticky trap predation in assassin bugs (Heteroptera: Reduviidae). Cladistics. doi:10.1111/cla.12140.

    Google Scholar 

  • Trauth, M. H., Larrasoana, J. C., & Mudelsee, M. (2009). Trends, rhythms, and events, in Plio-Pleistocene African climate. Quaternary Science Reviews, 28, 399–411.

Download references

Acknowledgements

Thanks to the collection manager at the Museo Civico di Storia Naturale, Genova and Dr. Eric Guilbert at the Muséum national d’Histoire naturelle for the loans of the holotypes of X. mancinii and X. schoutendeni to CW and PB, respectively. We thank Jonathan McGhee, a former undergraduate research student in the Weirauch lab, for assistance with specimen sorting and imaging. Special thanks to Rochelle Hoey-Chamberlain who assisted with specimen measurements and molecular work. Earlier drafts of this manuscript were reviewed by Alex Knyshov and other members of the Weirauch lab and we thank them for their valuable discussions and suggestions. This study was partially supported by the US National Science Foundation grant no. 0933853 (Principal Investigator C. Weirauch) and the University of California, Riverside.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Weirauch.

Electronic supplementary material

Online Resource 1.

Uncorrected pairwise distances for the D2 region of 28S rDNA for species of Xenocaucus; the male of X. ethiopiensis is selected as the reference taxon (XLSX 12 kb)

Online Resource 2.

Divergence dates based on the BEAST2 analysis showing 95% HPDs (JPEG 231 kb)

Online Resource 3.

Alternative biogeographic reconstructions for Xenocaucus using BioGeoBEARS and RASP DIVA (PPTX 9525 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weirauch, C., Forthman, M., Grebennikov, V. et al. From Eastern Arc Mountains to extreme sexual dimorphism: systematics of the enigmatic assassin bug genus Xenocaucus (Hemiptera: Reduviidae: Tribelocephalinae). Org Divers Evol 17, 421–445 (2017). https://doi.org/10.1007/s13127-016-0314-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-016-0314-2

Keywords

Navigation