Skip to main content

Advertisement

Log in

Performance Improvement in a Helical Savonius Wind Rotor

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Above all vertical axis wind turbines, for their lower cost and independent on wind direction, Savonius rotor takes the advantage to be more suitable for some implementation. Thus, many investigations have been carried out to improve its efficiency. This study emphasizes on the effect of the overlap distance and the blade shape on a helical Savonius wind turbine performance. Assessment methods based on the flow field characterizations, the variation of torque and power coefficient are performed. Thus, transient simulations using the SST kω turbulence model are carried out. The numerical model is validated using wind tunnel tests. Results indicate that the non-overlapped helical Savonius rotor highlights higher maximum power coefficient of 0.124 at a tip speed ratio of 0.73 over rotors with overlap distance of 10 mm, 15 mm and 20 mm, respectively. In addition, the delta-bladed rotor improves the performance of the helical Savonius rotor by 14.51%. With the novel blade shape, the maximum power coefficient reaches a value of 0.142 at a tip speed ratio of 0.78. The obtained results present an interesting data that could provide the aerodynamic characteristics of the airflow for the designers and engineers to enhance the efficiency of the helical Savonius turbine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

A :

Projected area (m2)

A r :

Aspect ratio, dimensionless

C Ts :

Static torque coefficient, dimensionless

C p :

Power coefficient, dimensionless

C T :

Torque coefficient, dimensionless

C p max :

Maximum power coefficient, dimensionless

C T max :

Maximum torque coefficient, dimensionless

C pr :

Pressure coefficient, dimensionless

D :

Rotor diameter (m)

D e :

End plate diameter (m)

d :

Blade chord length (m)

e :

Overlap distance (m)

F i :

External applied forces (N)

G k :

Production term of turbulence (kg m−1 s−3)

H :

Rotor height (m)

k :

Turbulent kinetic energy (m2 s−2)

O r :

Overlap ratio, dimensionless

p :

Pressure (Pa)

P :

Blade shape common portion (m)

P f :

Static pressure on blades surface (Pa)

P r :

Mechanical power (W)

P ref :

Reference pressure (Pa)

P w :

Wind power (W)

R :

Rotor radius (m)

Re:

Reynolds number, dimensionless

s :

Rotor shaft diameter (m)

t :

Time (s)

T d :

Dynamic torque (N m)

T s :

Static torque (N m)

u i :

The velocity component defined in xi = (x, y, z) coordinate direction

u t :

The friction velocity (m s−1)

\( u_{i}^{'} \) :

Fluctuating velocity components (m s−1)

\( \overline{{u^{'}_{i} u^{'}_{j} }} \) :

Reynolds stress tensor components (m2 s−2)

U :

Wind velocity (m s−1)

V :

Velocity of the flow around the rotor (m s−1)

x :

Cartesian coordinate (m)

t :

Cartesian coordinate (m)

y :

Cartesian coordinate (m)

y n :

Distance of the first node from wall (m)

y + :

Non-dimensional parameter

z :

Cartesian coordinate (m)

β * :

Constant of kω turbulent model

β 2 :

Constant of kω turbulent model

\( \sigma_{k} \) :

Constant of kω turbulent model

\( \sigma_{{_{\omega ,1} }} \) :

Constant of kω turbulent model

\( \sigma_{{_{\omega ,2} }} \) :

Constant of kω turbulent model

\( \theta \) :

Rotor angular position (rad)

μ :

Dynamic viscosity (Pa s)

μ t :

Turbulent viscosity (Pa s)

ρ :

Air density (kg m−3)

Ω:

Rotating speed (rad s−1)

λ :

Tip sped ratio, dimensionless

ψ :

Twist angle (°)

\( \delta_{ij} \) :

Chronecker indices

γ 2 :

Constant of kω turbulent model

Δt :

Time step (s)

References

  1. Kumar, R.; Raahemifar, K.; Fung, A.S.: A critical review of vertical axis wind turbines for urban applications. Renew. Sustain. Energy Rev. 89, 281–291 (2018)

    Article  Google Scholar 

  2. Ferrari, G.; Federici, D.; Schito, P.; Inzoli, F.; Mereu, R.: CFD study of Savonius wind turbine: 3D model validation and parametric analysis. Renew. Energy 105, 722–734 (2017)

    Article  Google Scholar 

  3. Kamoji, M.A.; Kedare, S.B.; Prabhu, S.V.: Experimental investigations on single stage modified Savonius rotor. Appl. Energy 86, 1064–1073 (2009)

    Article  Google Scholar 

  4. Bhayo, B.A.; Al-Kayiem, H.H.: Experimental characterization and comparison of performance parameters of S-rotors for standalone wind power system. Energy 138, 752–763 (2017)

    Article  Google Scholar 

  5. Jeon, K.S.; Jeong, J.I.; Pan, J.K.; Ryu, K.W.: Effects of the end plates with various shapes and sizes on helical Savonius wind turbines. Renew. Energy 79, 167–176 (2015)

    Article  Google Scholar 

  6. Mahmoud, N.H.; El-Haroun, A.A.; Wahba, E.; Nasef, M.H.: An experimental study on improvement of Savonius rotor performance. Alex. Eng. J. 51, 19–25 (2012)

    Article  Google Scholar 

  7. Saha, U.K.; Thotla, S.; Maity, D.: Optimum design configuration of Savonius rotor through wind tunnel experiments. Wind Eng. Ind. Aerodyn. 96, 1359–1375 (2008)

    Article  Google Scholar 

  8. Emmanuel, B.; Jun, W.: Numerical study of a six-bladed Savonius wind turbine. J. Sol. Eng. 133, 1–5 (2011)

    Google Scholar 

  9. Akwa, J.V.; Vielmo, H.A.; Petry, A.P.: A review on the performance of Savonius wind turbines. Renew. Sustain. Energy Rev. 16, 3054–3064 (2012)

    Article  Google Scholar 

  10. Zhao, Z.; Zheng, Y.; Xu, X.; Liu, W.; Hu, G.: Research on the improvement of the performance of Savonius rotor based on numerical study. In: The Proceedings of International Conference on Sustainable Power Generation and Supply (SUPERGEN) 2009, pp. 1–6

  11. Akwa, J.V.; Júnior, G.A.; Petry, A.P.: Discussion on the verification of the overlap ratio influence on performance coefficients of a Savonius wind rotor using computational fluid dynamics. Renewable Energy 38, 141–149 (2012)

    Article  Google Scholar 

  12. Roy, S.; Saha, U.K.: Computational study to assess the influence of overlap ratio on static torque characteristics of a vertical axis wind turbine. Procedia Eng. 51, 694–702 (2013)

    Article  Google Scholar 

  13. Hassanzadeh, R.; Mohammad Nejad, M.: Effects of inward and outward overlap ratios on the two-blade Savonius type of vertical axis wind turbine performance. Int. J. Green Energy 16, 1485–1496 (2019)

    Article  Google Scholar 

  14. Chen, J.; Chen, L.; Nie, L.; Xu, H.; Mo, Y.; Wang, C.: Experimental study of two-stage Savonius rotors with different gap ratios and phase shift angles. J. Renew. Sustain. Energy 8, 063302 (2016)

    Article  Google Scholar 

  15. Chen, J.; Jan, K.; Zhang, L.; Lu, L.; Yang, H.: Influence of phase-shift and overlap ratio on Savonius wind turbine’s performance. J. Sol. Energy Eng. 134, 011016 (2012)

    Article  Google Scholar 

  16. Alom, N.; Saha, U.K.: Influence of blade profiles on Savonius rotor performance: numerical simulation and experimental validation. Energy Convers. Manag. 186, 267–277 (2019)

    Article  Google Scholar 

  17. Hassan Saeed, H.A.; Nagib Elmekawy, A.M.; Kassab, S.Z.: Numerical study of improving Savonius turbine power coefficient by various blade shapes. Alex. Eng. J. 58, 429–441 (2019)

    Article  Google Scholar 

  18. Roy, S.; Saha, U.K.: Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine. Appl. Energy 137, 117–125 (2015)

    Article  Google Scholar 

  19. Mao, Z.; Tian, W.: Effect of the blade arc angle on the performance of a Savonius wind turbine. Adv. Mech. Eng. 7, 1–10 (2015)

    Article  Google Scholar 

  20. Gad, H.E.; Abd El-Hamid, A.A.; El-Askary, W.A.; Nasef, M.H.A.: New design of Savonius wind turbine: numerical study. CFD Lett. 6(4), 144–158 (2014)

    Google Scholar 

  21. Tian, W.; Mao, Z.; Zhang, B.; Li, Y.: Shape optimization of a Savonius wind rotor with different convex and concave sides. Energy 117, 287–299 (2018)

    Google Scholar 

  22. Kamoji, M.A.; Kedare, S.B.; Prabhu, S.V.: Performance tests on helical savonius rotor. Renew. Energy 34, 521–529 (2009)

    Article  Google Scholar 

  23. Saha, U.K.; Rajkumar, M.J.: On the performance analysis of Savonius rotor with twisted blades. Renew. Energy 31, 1776–1788 (2006)

    Article  Google Scholar 

  24. Lee, J.H.; Lee, Y.T.; Lim, H.C.: Effect of twist angle on the performance of Savonius wind turbine. Renew. Energy 89, 231–244 (2016)

    Article  Google Scholar 

  25. Driss, Z.: Wind Tunnels: Uses and Developments, Mechanical Engineering Theory and Applications. Nova Science Publishers, New York (2019). ISBN 978-1-53615-898-4

    Google Scholar 

  26. Coughtrie, A.R.; Borman, D.J.; Sleigh, P.A.: Effects of turbulence modelling on prediction of flow characteristics in a bench-scale anaerobic gas-lift digester. Bioresour. Technol. 138, 297–306 (2013)

    Article  Google Scholar 

  27. Driss, Z.; Mlayeh, O.; Driss, S.: Study of the bucket design effect on the turbulent flow around unconventional Savonius wind rotors. Energy 89, 708–729 (2015)

    Article  Google Scholar 

  28. Driss, Z.; Mlayeh, O.; Driss, D.; Maaloul, M.; Abid, M.S.: Numerical simulation and experimental validation of the turbulent flow around a small incurved Savonius wind rotor. Energy 74, 506–517 (2014)

    Article  Google Scholar 

  29. Levitas, V.I.; Roy, A.M.; Preston, D.L.: Multiple twinning and variant-variant transformations in martensite: phase-field approach. Phys. Rev. B 88, 054113 (2013)

    Article  Google Scholar 

  30. Levitas, V.I.; Roy, A.M.: Multiphase phase field theory for temperature- and stress-induced phase transformations. Phys. Rev. B 91, 174109 (2015)

    Article  Google Scholar 

  31. Jaohindy, P.; McTavish, S.; Garde, F.; Bastide, A.: An analysis of the transient forces acting on Savonius rotors with different aspect ratios. Renew. Energy 55, 286–295 (2013)

    Article  Google Scholar 

  32. Sharma, S.; Sharma, R.K.: Performance improvement of Savonius rotor using multiple quarter blades—a CFD investigation. Energy Convers. Manag. 127, 43–54 (2016)

    Article  Google Scholar 

  33. Roy, S.; Ducoin, A.: Unsteady analysis on the instantaneous forces and moment arms acting on a novel Savonius-style wind turbine. Energy Convers. Manag. 121, 281–296 (2016)

    Article  Google Scholar 

  34. Nasef, M.H.; El-Askary, W.A.; AbdEL-Hamid, A.A.; Gad, H.E.: Evaluation of Savonius rotor performance: static and dynamic studies. J. Wind Eng. Ind. Aerodyn. 123, 1–11 (2013)

    Article  Google Scholar 

  35. Mosbahi, M.; Ayadi, A.; Chouaibi, Y.; Driss, Z.; Tucciarellid, T.: Performance study of a Helical Savonius hydrokinetic turbine with a new deflector system design. Energy Convers. Manag. 194, 55–74 (2019)

    Article  Google Scholar 

  36. Mosbahi, M.; Ayadi, A.; Chouaibi, Y.; Driss, Z.; Tucciarellid, T.: Performance improvement of a novel combined water turbine. Energy Convers. Manag. 205, 112473 (2020)

    Article  Google Scholar 

  37. Kumar, A.; Saini, R.P.: Performance analysis of a Savonius hydrokinetic turbine having twisted blades. Renew. Energy 108, 502–522 (2017)

    Article  Google Scholar 

  38. Kumar, A.; Saini, R.P.: Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades. Renew. Energy 113, 461–478 (2017)

    Article  Google Scholar 

  39. Anbarsooz, M.: Aerodynamic performance of helical Savonius wind rotors with 30° and 45° twist angles: experimental and numerical studies. J. Power Energy 230, 1–12 (2016)

    Article  Google Scholar 

  40. Damak, A.; Driss, Z.; Abid, M.S.: Optimization of the helical Savonius rotor through wind tunnel experiments. J. Wind Eng. Ind. Aerodyn. 174, 80–93 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Laboratory of Electro-Mechanic Systems (LASEM) members for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariem Lajnef.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lajnef, M., Mosbahi, M., Chouaibi, Y. et al. Performance Improvement in a Helical Savonius Wind Rotor. Arab J Sci Eng 45, 9305–9323 (2020). https://doi.org/10.1007/s13369-020-04770-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04770-6

Keywords

Navigation