Skip to main content
Log in

DNA Barcoding: Applications

  • MATHEMATICAL MODELS AND METHODS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The method of DNA barcoding has become a reliable tool that allows fast and accurate identification and verifies biodiversity in the hands of an experienced taxonomist. This method is very popular in various fields of human activity because of its ease of use and economic benefit. Examples of use are presented and the potential of the DNA barcoding method of living organisms in areas such as environmental monitoring (identification of invasive species, parasites and their carriers, pests), food and pharmaceutical industries (detection of counterfeit products, determination of product quality), and forensics are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Shneer, V.S., DNA barcoding is a new approach in comparative genomics of plants, Russ. J. Genet., 2009, vol. 45, no. 11, pp. 1267—1278. https://doi.org/10.1134/S1022795409110027

    Google Scholar 

  2. Hollingsworth, P.M., Refining the DNA barcode for land plants, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 19451—19452. https://doi.org/10.1073/pnas.1116812108

    Google Scholar 

  3. Li, X., Yang, Y., Robert, J., et al., Plant DNA barcoding: from gene to genome, Biol. Rev., 2015, vol. 90, pp. 157—166. https://doi.org/10.1111/brv.12104

    Google Scholar 

  4. Coissac, E., Hollingsworth, P.M., Lavergne, S., and Taberlet, P., From barcodes to genomes: extending the concept of DNA barcoding, Mol. Ecol., 2016, vol. 25, no. 7, pp. 1423—1428. https://doi.org/10.1111/mec.13549

    Google Scholar 

  5. Shekhovtsov, S.V., Shekhovtsova, I.N., and Pel’tek, S.E., DNA barcoding: methods and approaches, Usp. Sovrem. Biol., 2019, vol. 139, no. 3, pp. 211—220. https://doi.org/10.1134/S0042132419030074

    Google Scholar 

  6. Shneer, V.S. and Rodionov, A.V., Plant DNA barcodes, Usp. Sovrem. Biol., 2018, vol. 138, no. 6, pp. 531—537. https://doi.org/10.7868/S0042132418060017

    Google Scholar 

  7. De Salle, R. and Goldstein, P., Review and interpretation of trends in DNA barcoding, Front. Ecol. Evol., 2019, vol. 7, article 302. https://doi.org/10.3389/fevo.2019.00302

    Google Scholar 

  8. Hebert, P.D.N., Cywinska, A., and Ball, S.L., Biological identifications through DNA barcodes, Proc. R. Soc. London, Ser. B, 2003, vol. 270, no. 1512, pp. 313—321.

    Google Scholar 

  9. Hebert, P.D.N., Ratnasingham, S., and de Waard, J.R., Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species, Proc. R. Soc. London, Ser. B, 2003, vol. 270, suppl. 1, pp. 596—599.

    Google Scholar 

  10. Schoch, C.L., Seifert, K.A., Huhndorf, S., et al., Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, pp. 6241—6246. https://doi.org/10.1073/pnas.1117018109

    Google Scholar 

  11. Ratnasingham, S. and Hebert, P.D.N., A DNA-based registry for all animal species: the Barcode Index Number (BIN) system, PLoS One, 2013, vol. 8, no. 7. e66213. https://doi.org/10.1371/journal.pone.0066213

    Google Scholar 

  12. Massana, R., Gobet, A., Audic, S., et al., Marine protest diversity in European coastal waters and sediments as revealed by high-throughput sequencing, Environ. Microbiol., 2015, vol. 17, no. 10, pp. 4035—4049. https://doi.org/10.1111/1462-2920.12955

    Google Scholar 

  13. Valentini, A., Taberlet, P., Miaud, C., et al., Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding, Mol. Ecol., 2016, vol. 25, no. 4, pp. 929—942. https://doi.org/10.1111/mec.13428

    Google Scholar 

  14. Batovska, J., Cogan, N.O., Lynch, S.E., and Blacket, M.J., Using next-generation sequencing for DNA barcoding: capturing allelic variation in ITS2, Genes, Genomes, Genetics, 2017, vol. 7, no. 1, pp. 19—29. https://doi.org/10.1534/g3.116.036145

    Google Scholar 

  15. Schenk, J. and Fontaneto, D., Biodiversity analyses in freshwater meiofauna through DNA sequence data: review, Hydrobiologia, 2020, vol. 847, pp. 2597—2611. https://doi.org/10.1007/s10750-019-04067-2

    Google Scholar 

  16. Semenov, M.V., Metabarcoding and metagenomics in soil ecology research: achievements, challenges, and opportunities, Zh. Obshch. Biol., 2019, vol. 80, no. 6, pp. 403—417.

    Google Scholar 

  17. Callahan, B.J., Mc Murdie, P.J., and Holme, S.P., Exact sequence variants should replace operational taxonomic units in marker-gene data analysis, ISME J., 2017, vol. 11, no. 12, pp. 2639—2943. https://doi.org/10.1038/ismej.2017.119

    Google Scholar 

  18. Dormontt, E.E., Van Dijk, K., Bell, K.L., et al., Advancing DNA barcoding and metabarcoding applications for plants requires systematic analysis of herbarium collections—an Australian perspective, Front. Ecol. Evol., 2018, vol. 6, p. 134. https://doi.org/10.3389/fevo.2018.00134

    Google Scholar 

  19. Weigand, H., Beermann, A.J., Čiamporet, F., et al., DNA barcode reference libraries for the monitoring of aquatic biota in Europe: gap-analysis and recommendations for future work, Sci. Total Environ., 2019, vol. 678, no. 15, pp. 499—524. https://doi.org/10.1016/j.scitotenv.2019.04.247

    Google Scholar 

  20. Zhong-Lian, Z., Mei-Fang, S., Yan-Hong, G., et al., DNA barcoding in medicinal plants: testing the potential of a proposed barcoding marker for identification of Uncaria species from China, Biochem. System. Ecol., 2015, vol. 60, pp. 8—14. https://doi.org/10.1016/j.bse.2015.02.017

    Google Scholar 

  21. Liu, M., Xi-Wen, L.I., Bao-Sheng, L., et al., Species identification of poisonous medicinal plant using DNA barcoding, Chin. J. Nat. Med., 2019, vol. 17, no. 8, pp. 585—590. https://doi.org/10.1016/S1875-5364(19)30060-3

    Google Scholar 

  22. Jena, B., Kumar, G.A., Biswal, B., et al., Cultivar identification in Tabernaemontana divaricata (L.) R. Br. ex Roem. and Schult. using universal barcode markers, Gene Rep., 2019, vol. 17, 100467. https://doi.org/10.1016/j.genrep.2019.100467

    Google Scholar 

  23. Sheidai, M., Tabaripour, R., Talebi, S.M., et al., Adulteration in medicinally important plant species of Ziziphora in Iran market: DNA barcoding approach, Ind. Crops Prod., 2019, vol. 130, pp. 627—633. https://doi.org/10.1016/j.indcrop.2019.01.025

    Google Scholar 

  24. Loneac, S.A., Hassanac, Q.P., and Gupta, S., Development of DNA barcode for rapid identification of Epimedium elatum (Morren and Decne) from Northwestern Himalayas in India, J. Appl. Res. Med. Aromat. Plants, 2019, vol. 13, 100205. https://doi.org/10.1016/j.jarmap.2019.100205

    Google Scholar 

  25. Zahn, R.J., Silva, A.J., and Hellberg, R.S., Development of a DNA mini-barcoding protocol targeting COI for the identification of Elasmobranch species in shark cartilage pills, Food Control, 2020, vol. 109, 106918. https://doi.org/10.1016/j.foodcont.2019.106918

    Google Scholar 

  26. Joly, S., Davies, T.J., Archambault, A., et al., Ecology in the age of DNA barcoding: the resource, the promise and the challenges ahead, Mol. Ecol. Res., 2014, vol. 14, pp. 221—232. https://doi.org/10.1111/1755-0998.12173

    Google Scholar 

  27. Kress, J.W., Plant DNA barcodes: applications today and in the future. Review, J. Syst. Evol., 2017, vol. 55, no. 4, pp. 291—307. https://doi.org/10.1111/jse.12254

    Google Scholar 

  28. Sgamma, T., Lockie-Williams, C., Kreuzer, M., et al., DNA barcoding for industrial quality assurance, Planta Med., 2017, vol. 83, pp. 1117—1129. https://doi.org/10.1055/s-0043-113448

    Google Scholar 

  29. Galimberti, A., Casiraghi, M. and Bruni, I., From DNA barcoding to personalized nutrition: the evolution of food traceability, Curr. Opin. Food Sci., 2019, vol. 28, pp. 41—48. https://doi.org/10.1016/j.cofs.2019.07.008

    Google Scholar 

  30. Tilocca, B., Costanzo, N., Mari, V., et al., Milk microbiota: characterization methods and role in cheese production, J. Prot., 2020, vol. 210, 103534. https://doi.org/10.1016/j.jprot.2019.103534

    Google Scholar 

  31. Sun, W., Li, J.-J., Xiong, C., et al., The potential power of Bar-HRM technology in herbal medicine identification, Front. Plant Sci., 2016, vol. 7, 367. https://doi.org/10.3389/fpls.2016.00367

    Google Scholar 

  32. Xanthopoulou, A., Ganopoulos, I., Kalivas, A., et al., Multiplex HRM analysis as a tool for rapid molecular authentication of nine herbal teas, Food Control, 2016, vol. 60, pp. 113—116. https://doi.org/10.1016/j.foodcont.2015.07.021

    Google Scholar 

  33. Beebe, N.W., DNA barcoding mosquitoes: advice for potential prospectors. Review, Parasitology, 2018, vol. 145, no. 5, pp. 622—633. https://doi.org/10.1017/S0031182018000343

    Google Scholar 

  34. De Oliveira, E.A., Penhacek, M., Guimaraes, K.L., et al., Pristimantis in the Eastern Brazilian Amazon: DNA barcoding reveals underestimated diversity in a megadiverse genus: review, Mitochondrial DNA, Part A, 2019, vol. 30, no. 6, pp. 731—738. https://doi.org/10.1080/24701394.2019.1634696

    Google Scholar 

  35. Bennett, R., Blagoev, G., and Copley, C., Araneae of Canada: review, Zookeys, 2019, vol. 819, pp. 41—56. https://doi.org/10.3897/zookeys.819.26391

    Google Scholar 

  36. Abdessamad, A.I., Transitions from single- to multi-locus approach in determining cryptic and describing new species within Beauveria genus (Cordycipitaceae, Hypocreales): a review, Phytotaxa, 2019, vol. 413, no. 4, pp. 257—273.https://doi.org/10.11646/phytotaxa.413.4.1

    Google Scholar 

  37. Arroyave, J., Martinez, C.M., and Stiassny, M.L.J., DNA barcoding uncovers extensive cryptic diversity in the African long-fin tetra Bryconalestes longipinnis (Alestidae: Characiformes), J. Fish Biol., 2019, vol. 95, no. 2, pp. 379—392. https://doi.org/10.1111/jfb.13987

    Google Scholar 

  38. Cryer, J., Wynne, F., Price, S.J., and Puschendorf, R., Cryptic diversity in Lithobates warszewitschii (Amphibia, Anura, Ranidae), ZooKeys, 2019, vol. 838, pp. 49—69. https://doi.org/10.3897/zookeys.838.29635

    Google Scholar 

  39. Andriollo, T. and Ruedi, M., Novel molecular tools to identify Plecotus bats in sympatry and a review of their distribution in Switzerland: review, Revue Suisse Zool., 2018, vol. 125, pp. 61—72. https://doi.org/10.5281/zenodo.1196013

    Google Scholar 

  40. Punina, E.O., Machs, E.M., Krapivskaya, E.E., and Rodionov, A.V., Polymorphic sites in transcribed spacers of 35S rRNA genes as an indicator of origin of the Paeonia cultivars, Russ. J. Genet., 2017, vol. 53, no. 2, pp. 202—212. https://doi.org/10.1134/S1022795417010112

    Google Scholar 

  41. Ruppert, K.M., Kline, R.J., and Rahman, M.S., Past, present and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA, Global Ecol. Conserv., 2019, vol. 17. e00547. https://doi.org/10.1016/j.gecco.2019.e00547

    Google Scholar 

  42. Toju, H., High-throughput DNA barcoding for ecological network studies, Popul. Ecol. Rev., 2015, vol. 57, no. 1, pp. 37—51. https://doi.org/10.1007/s10144-014-0472-z

    Google Scholar 

  43. Kress, W.J., García-Robledo, C., Uriarte, M., and Erickson, D.L., DNA barcodes for ecology, evolution, and conservation: review, Trends Ecol. Evol., 2015, vol. 30, no. 1, pp. 25—35. https://doi.org/10.1016/j.tree.2014.10.008

    Google Scholar 

  44. Fahner, N.A., Shokralla, S., Baird, D.J., et al., Large-scale monitoring of plants through environmental DNA metabarcoding of soil: recovery, resolution and annotation of four DNA markers, PLoS One, 2016, vol. 11, no. 6. e0157505. https://doi.org/10.1371/journal.pone.0157505

    Google Scholar 

  45. Hering, D., Borja, A., Jones, J.I., et al., Implementation options for DNA-based identification into ecological status assessment under the European water framework directive, Water Res., 2018, vol. 138, pp. 192—205. https://doi.org/10.1016/j.watres.2018.03.003

    Google Scholar 

  46. Bagley, M., Pilgrim, E., Knapp, M., et al., High-throughput environmental DNA analysis informs a biological assessment of an urban stream, Ecol. Indic., 2019, vol. 104, pp. 378—389. https://doi.org/10.1016/j.ecolind.2019.04.088

    Google Scholar 

  47. Xiong, M.Y., Wang, D.J., and Bu, H.L., Molecular dietary analysis of two sympatric felids in the mountains of Southwest China biodiversity hotspot and conservation implications, Sci. Rep., 2017, vol. 7, 41909. https://doi.org/10.1038/srep41909

    Google Scholar 

  48. Buglione, M., Maselli, V., Rippa, D., et al., A pilot study on the application of DNA metabarcoding for non-invasive diet analysis in the Italian hare, Mamm. Biol., 2018, vol. 88, pp. 31—42. https://doi.org/10.1016/j.mambio.2017.10.010

    Google Scholar 

  49. Robeson, M.S., Khanipov, K., Golovko, G., et al., Assessing the utility of metabarcoding for diet analyses of the omnivorous wild pig (Sus scrofa), Ecol. Evol., 2018, vol. 8, pp. 185—196. https://doi.org/10.1002/ece3.3638

    Google Scholar 

  50. Erickson, D.L., Reed, E., Ramachandran, P., et al., Reconstructing a herbivore’s diet using a novel rbcL DNA mini-barcode for plants, AoB Plants, 2017, vol. 9, no. 3. https://doi.org/10.1093/aobpla/plx015

  51. De Vere, N., Jones, L.E., Gilmore, T., et al., Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability, Sci. Rep., 2017, 42838. https://doi.org/10.1038/srep42838

  52. Chan-Chable, R.J., Martínez-Arce, A., Mis-Avila, P.C., and Ortega-Morales, A.I., DNA barcodes and evidence of cryptic diversity of anthropophagous mosquitoes in Quintana Roo, Mexico, Ecol. Evol., 2019, vol. 9, pp. 4692—4705. https://doi.org/10.1002/ece3.5073

    Google Scholar 

  53. Hernández-Triana, L.M., Brugman, V.A., Nikolova, N.I., et al., DNA barcoding of British mosquitoes (Diptera, Culicidae) to support species identification, discovery of cryptic genetic diversity and monitoring invasive species, ZooKeys, 2019, vol. 832, pp. 57—76. https://doi.org/10.3897/zookeys.832.32257

    Google Scholar 

  54. Bespalaya, Y.V., Bolotov, I.N., Aksenova, O.V., et al., DNA barcoding reveals invasion of two cryptic Sinanodonta mussel species (Bivalvia: Unionidae) into the largest Siberian river, Limnologica, 2017, vol. 69, pp. 94—102. https://doi.org/10.1016/j.limno.2017.11.009

    Google Scholar 

  55. Kolesnikova, A.A., Baturina, M.A., Shadrin, D.M., et al., New records of Lumbricidae and Collembola in anthropogenic soils of East European tundra, ZooKeys, 2019, vol. 885, pp. 15—25. https://doi.org/10.3897/zookeys.885.37279

    Google Scholar 

  56. Shilin, C., Xiaohui, P., Jingyuan, S., et al., A renaissance in herbal medicine identification: from morphology to DNA: review, Biotechnol. Adv., 2014, vol. 32, pp. 1237—1244. https://doi.org/10.1016/j.biotechadv.2014.07.004

    Google Scholar 

  57. Mishra, P., Kumar, A., Nagireddy, A., et al., DNA barcoding: an efficient tool to overcome authentication challenges in the herbal market, Plant Biotechnol., 2015, vol. 14, no. 1, pp. 8—21. https://doi.org/10.1111/pbi.12419

    Google Scholar 

  58. Osathanunkul, M., Suwannapoom, C., Osathanunkul, K., et al., Evaluation of DNA barcoding coupled high resolution melting for discrimination of closely related species in phytopharmaceuticals, Phytomedicine, 2016, vol. 23, no. 2, pp. 156—165. https://doi.org/10.1016/j.phymed.2015.11.018

    Google Scholar 

  59. Mezzasalma, V., Ganopoulos, I., Galimberti, A., et al., Poisonous or non-poisonous plants? DNA-based tools and applications for accurate identification: review, Int. J. Legal. Med., 2017, vol. 131, pp. 1—19. https://doi.org/10.1007/s00414-016-1460-y

    Google Scholar 

  60. Pei, Y.F., Zhang, Q.Z., and Wang, Y.Z., Application of authentication evaluation techniques of ethnobotanical medicinal plant genus Paris: a review, Crit. Rev. Anal. Chem., 2019, vol. 50, no. 5, pp. 405—423. https://doi.org/10.1080/10408347.2019.1642734

    Google Scholar 

  61. Zhokhova, E.V., Rodionov, A.V., Povydysh, M.N., et al., Current state and prospects of DNA barcoding and DNA fingerprinting in the analysis of the quality of plant raw materials and plant-derived drugs, Usp. Sovrem. Biol., 2019, no. 1, pp. 25—40. https://doi.org/10.1134/s0042132419010095

  62. Techen, N., Parveen, I., Pan, Z., and Khan, I.A., DNA barcoding of medicinal plant material for identification, Curr. Opin. Biotechnol., 2014, vol. 25, pp. 103—110. https://doi.org/10.1016/j.copbio.2013.09.010

    Google Scholar 

  63. Yang, J., Dong, L., Wei, G., et al., Identification and quality analysis of Panax notoginseng and Panax vietnamensis var. fuscidicus through integrated DNA barcoding and HPLC, Chin. Herbal Med., 2018, vol. 10, no. 2, pp. 177—183. https://doi.org/10.1016/j.chmed.2018.03.008

    Google Scholar 

  64. Rashmi, K.V., Sathyanarayana, N., and Vidya, S.M., Validation of DNA barcoding markers in common Mucuna species of India for taxonomy and pharmacognosy applications, Plant Gene, 2017, vol. 12, pp. 98—104. https://doi.org/10.1016/j.plgene.2017.09.001

    Google Scholar 

  65. Zhou, Y., Du, X., Zheng, X., et al., ITS2 barcode for identifying the officinal rhubarb source plants from its adulterants, Biochem. Syst. Ecol., 2017, vol. 70, pp. 177—185. https://doi.org/10.1016/j.bse.2016.12.004

    Google Scholar 

  66. Zhou, H., Ma, Sh., Song, J., et al., QR code labeling system for Xueteng-related herbs based on DNA barcode, Chin. Herbal Med., 2019, vol. 11, no. 1, pp. 52—59. https://doi.org/10.1016/j.chmed.2018.09.006

    Google Scholar 

  67. Ming, S., Gang-Qiang, D., Ya-Qin, Z., et al., Identification of processed Chinese medicinal materials using DNA mini-barcoding, Chin. J. Nat. Med., 2017, vol. 15, no. 7, pp. 481—486. https://doi.org/10.1016/S1875-5364(17)30073-0

    Google Scholar 

  68. Costa, J., Campos, B., Amaral, J.S., et al., HRM analysis targeting ITS1 and matK loci as potential DNA mini-barcodes for the authentication of Hypericum perforatum and Hypericum androsaemum in herbal infusions, Food Control, 2016, vol. 61, pp. 105—114. https://doi.org/10.1016/j.foodcont.2015.09.035

    Google Scholar 

  69. Sharma, A., Folch, J.L. Cardoso-Taketa, A., et al., DNA barcoding of the Mexican sedative and anxiolytic plant Galphimia glauca, J. Ethnopharmacol., 2012, vol. 144, no. 2, pp. 371—378. https://doi.org/10.1016/j.jep.2012.09.022

    Google Scholar 

  70. Frigerio, J., Pellesi, R., Mezzasalma, V., et al., Development of a DNA barcoding-like approach to detect mustard allergens in wheat flours, Genes, 2019, vol. 10, no. 3, 234. https://doi.org/10.3390/genes10030234

    Google Scholar 

  71. Gao, Z.T., Liu, Y., Wang, X.Y., et al., DNA mini-barcoding: a derived barcoding method for herbal molecular identification, Front. Plant Sci., 2019, vol. 10, 987. https://doi.org/10.3389/fpls.2019.00987

    Google Scholar 

  72. Thongkhao, K., Tungphatthong, Ch., Phadungcharoen, T., and Sukrong, S., The use of plant DNA barcoding coupled with HRM analysis to differentiate edible vegetables from poisonous plants for food safety, Food Control, 2020, vol. 109, 106896. https://doi.org/10.1016/j.foodcont.2019.106896

    Google Scholar 

  73. Tnah, L.H., Lee, S.L., Tan, A.L., et al., DNA barcode database of common herbal plants in the tropics: a resource for herbal product authentication, Food Control, 2019, vol. 95, pp. 318—326. https://doi.org/10.1016/j.foodcont.2018.08.022

    Google Scholar 

  74. Swetha, V.P., Parvathy, V.A., Sheeja, T.E., and Sasikuma, B., Authentication of Myristica fragrans Houtt. using DNA barcoding, Food Control, 2017, vol. 73, pp. 1010—1015. https://doi.org/10.1016/j.foodcont.2016.10.004

    Google Scholar 

  75. Villa, C., Costa, J., Meira, L., et al., Exploiting DNA mini-barcodes as molecular markers to authenticate saffron (Crocus sativus L.), Food Control, vol. 2016, vol. 65, pp. 21—31. https://doi.org/10.1016/j.foodcont.2016.01.008.

  76. Zhang, M., Shi, Y., Sun, W., et al., An efficient DNA barcoding based method for the authentication and adulteration detection of the powdered natural spices, Food Control, 2019, vol. 106, 106745. https://doi.org/10.1016/j.foodcont.2019.106745

    Google Scholar 

  77. Lee, Sh., Wang, Ch., Yen, Ch., and Chang, Ch., DNA barcode and identification of the varieties and provenances of Taiwan’s domestic and imported made teas using ribosomal internal transcribed spacer 2 sequences, J. Food Drug Anal., 2017, vol. 25, no. 2, pp. 260—274. https://doi.org/10.1016/j.jfda.2016.06.008

    Google Scholar 

  78. Campanaro, A., Tommasi, N. Guzzetti, L., et al., DNA barcoding to promote social awareness and identity of neglected, underutilized plant species having valuable nutritional properties, Food Res. Int., 2018, vol. 115, pp. 1—9. https://doi.org/10.1016/j.foodres.2018.07.031

    Google Scholar 

  79. Haynes, E., Jimenez, E., Pardo, M.A., and Helyar, S.J., The future of NGS (Next Generation Sequencing) analysis in testing food authenticity, Food Control, 2019, vol. 101, pp. 134—143. https://doi.org/10.1016/j.foodcont.2019.02.010

    Google Scholar 

  80. Chimeno, C., Moriniere, J., Podhorna, J., et al., DNA barcoding in forensic entomology-establishing a DNA reference library of potentially forensic relevant arthropod species, J. Forensic Sci., 2019, vol. 64, no. 2, pp. 593—601. https://doi.org/10.1111/1556-4029.13869

    Google Scholar 

  81. Kotrba, M., Commentary on: Chimeno, C., Morinière, J., Podhorna, J., Hardulak, L., Hausmann, A., Reckel, F., et al., DNA barcoding in forensic entomology-establishing a DNA reference library of potentially forensic relevant arthropod species, J. Forensic Sci., 2019, vol. 64, no. 4, pp. 593—601. https://doi.org/10.1111/1556-4029.14094

    Google Scholar 

  82. Fang, T., Liao, S., Chen, X., et al., Forensic drowning site inference employing mixed pyrosequencing profile of DNA barcode gene (rbcL), Int. J. Legal. Med., 2019, vol. 133, pp. 1351—1360. https://doi.org/10.1007/s00414-019-02075-4

    Google Scholar 

  83. Ferri, G., Corradini, B., Ferrari, F., et al., Forensic botany II, DNA barcode for land plants: which markers after the international agreement?, Forensic Sci. Int.: Genet., 2015, vol. 15, pp. 131—136. https://doi.org/10.1016/j.fsigen.2014.10.005

    Google Scholar 

  84. Park, E., Kim, J., and Lee, H., Plant DNA barcoding system for forensic application, Forensic Sci. Int.: Genet., Suppl. Ser., 2017, vol. 6, pp. e282—e283. https://doi.org/10.1016/j.fsigss.2017.09.141

    Google Scholar 

  85. Karen, L., Bella, K.S., Burgessb, K.C., et al., Review and future prospects for DNA barcoding methods in forensic palynology, Forensic Sci. Int.: Genet., 2016, vol. 21, pp. 110—116. https://doi.org/10.1016/j.fsigen.2015.12.010

    Google Scholar 

  86. Abramson, N.I., Molecular markers, phylogeography and the search for criteria of species differentiation, Tr. Zool. Inst. Ross. Akad. Nauk, 2009, no. 1, pp. 185—198.

  87. Saarela, J.M., Sokoloff, P.C., Gillespie, L.J., et al., DNA barcoding the Canadian Arctic flora: core plastid barcodes (rbcL + matK) for 490 vascular plant species, PLoS One, 2013, vol. 8, no. 10. e77982. https://doi.org/10.1371/journal.pone.0077982

    Google Scholar 

Download references

Funding

This study was performed within the framework of the state task “Plant Diversity on the Western Macroslope of the Subpolar Urals” (АААА-А19-119011790022-1) and “Distribution, Systematics, and Spatial Organization of Fauna and Animal Populations in Taiga and Tundra Landscapes and Ecosystems of the European Northwest of Russia” (АААА-А17-117112850235-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Shadrin.

Ethics declarations

The author declares that he has no conflict of interest. This article does not contain any studies involving animals or human participants performed by the author.

Additional information

Translated by M. Novikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shadrin, D.M. DNA Barcoding: Applications. Russ J Genet 57, 489–497 (2021). https://doi.org/10.1134/S102279542104013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279542104013X

Keywords:

Navigation