Skip to main content

Biotic Influences: Parasitic Associations

  • Chapter
  • First Online:
Plant Physiological Ecology

Abstract

We have so far mainly dealt with autotrophic plants that assimilate CO2 from the atmosphere into complex organic molecules and acquire nutrients and water from the rhizosphere. There are also fascinating plant species that lack the capacity to assimilate sufficient CO2 to sustain their growth and that cannot absorb nutrients and water from the rhizosphere in sufficient quantities to reproduce successfully. These plants comprise approximately 1% of all flowering plant species; they are parasitic and rely on a host plant to provide them with the materials they cannot acquire from their abiotic environment (Nickrent et al. 1998; Westwood et al. 2010). About 4000 plant species within 270 genera in over 20 families [predominantly angiosperms; we only have firm evidence for one gymnosperm parasite: Parasitaxus ustus (conifer coral tree) (Feild and Brodribb 2005)] rely on a parasitic association with a host plant for their mineral nutrition, water uptake, and/or carbon supply (Fig. 15.1). Molecular analysis of nuclear, chloroplast, and mitochondrial DNA suggests at least 12 or 13 origins of parasitism in angiosperms (Nickrent et al. 1998; Barkman et al. 2007; Westwood et al. 2010). They inhabit ecosystems ranging from the high Arctic to the tropics (Press and Phoenix 2005). Some of these species [e.g., Striga spp. (witchweed), Orobanche spp. (broomrape), Cuscuta spp. (dodder laurel), and Arceuthobium douglasii (Douglas-fir dwarf mistletoe)] are economically important pests that cause large yield losses of crop or forest plants, especially in Africa and Mediterranean countries (Estabrook and Yoder 1998; Runyon et al. 2010). Other parasitic species (Cistanche spp.) are grown commercially to extract traditional medicines in China (Li et al. 2016), or for their fragrant wood [Santalum album and Santalum spicatum (sandalwood)] (Jones et al. 1995). Ecologically, parasitic plants fill a fascinating niche in their exploitation of other plants to acquire sparingly available resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackroyd RD, Graves JD. 1997. The regulation of the water potential gradient in the host and parasite relationship between Sorghum bicolor and Striga hermonthica. Ann Bot 80: 649–656.

    Article  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435: 824–827.

    Article  CAS  PubMed  Google Scholar 

  • Albrecht H, Yoder JI, Phillips DA. 1999. Flavonoids promote haustoria formation in the root parasite Triphysaria versicolor. Plant Physiol 119: 585–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayongwa GC, Stomph TJ, Emechebe AM, Kuyper TW. 2006. Root nitrogen concentration of sorghum above 2% produces least Striga hermonthica seed stimulation. Ann Appl Biol 149: 255–262.

    Article  CAS  Google Scholar 

  • Babiker AGT, Ejeta G, Butler LG, Woodson WR. 1993. Ethylene biosynthesis and strigol-induced germination of Striga asiatica. Physiol Plant 88: 359–365.

    Article  CAS  Google Scholar 

  • Bannister P. 1989. Nitrogen concentration and mimicry in some New Zealand mistletoes. Oecologia 79: 128–132.

    Article  PubMed  Google Scholar 

  • Bardgett RD, Smith RS, Shiel RS, Peacock S, Simkin JM, Quirk H, Hobbs PJ. 2006. Parasitic plants indirectly regulate below-ground properties in grassland ecosystems. Nature 439: 969–972.

    Article  CAS  PubMed  Google Scholar 

  • Barkman TJ, McNeal JR, Lim S-H, Coat G, Croom HB, Young ND, DePamphilis CW. 2007. Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evol Biol 7: 248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barlow BA, Wiens D. 1977. Host-parasite resemblance in Australian mistletoes: the case for cryptic mimicry. Evolution 31: 69–84.

    Article  PubMed  Google Scholar 

  • Birschwilks M, Haupt S, Hofius D, Neumann S. 2006. Transfer of phloem-mobile substances from the host plants to the holoparasite Cuscuta sp. J Exp Bot 57: 911–921.

    Article  CAS  PubMed  Google Scholar 

  • Bouwmeester HJ, Roux C, Lopez-Raez JA, Bécard G. 2007. Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12: 224–230.

    Article  CAS  PubMed  Google Scholar 

  • Calladine A, Pate JS. 2000. Haustorial structure and functioning of the root hemiparastic tree Nuytsia floribunda (Labill.) R.Br. and water relationships with its hosts. Ann Bot 85: 723–731.

    Article  Google Scholar 

  • Cameron DD, Coats AM, Seel WE. 2006. Differential resistance among host and non-host species underlies the variable success of the hemi-parasitic plant Rhinanthus minor. Ann Bot 98: 1289–1299.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cechin I, Press MC. 1993. Nitrogen relations of the sorghum-Sfriga hermonthica hostparasite association: growth and photosynthesis. Plant Cell Environ 16: 237–247.

    Article  CAS  Google Scholar 

  • Cirocco RM, Facelli JM, Watling JR. 2017. Does nitrogen affect the interaction between a native hemiparasite and its native or introduced leguminous hosts? New Phytol 213: 812–821.

    Article  CAS  PubMed  Google Scholar 

  • Cook CE, Whichard LP, Turner B, Wall ME, Egley GH. 1966. Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154: 1189–1190.

    Article  CAS  PubMed  Google Scholar 

  • Dawson JH, Musselman LJ, Wolswinkel P, Dörr I 1994. Biology and control of Cuscuta. In: Duke SO ed. Reviews of Weed Science. Champaign: Imperial Printing Company, 265–317.

    Google Scholar 

  • Ehleringer JR, Schulze, E.-D., Ziegler, H., Lange, O.L., Farquhar, G.D., Cowan, I.R. 1985. Xylem-tapping mistletoes: water or nutrient parasites? Science 227: 1479–1481.

    Article  CAS  PubMed  Google Scholar 

  • Ehleringer JR, Ullmann I, Lange OL, Farquhar GD, Cowan IR, Schulze ED, Ziegler H. 1986. Mistletoes: a hypothesis concerning morphological and chemical avoidance of herbivory. Oecologia 70: 234–237.

    Article  CAS  PubMed  Google Scholar 

  • Einhellig F, Souza I. 1992. Phytotoxicity of sorgoleone found in grain Sorghum root exudates. J Chem Ecol 18: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Estabrook EM, Yoder JI. 1998. Plant-plant communications: rhizosphere signaling between parasitic angiosperms and their hosts. Plant Physiol 116: 1–7.

    Article  CAS  PubMed Central  Google Scholar 

  • Fay MF, Bennett JR, Dixon KW, Christenhusz MJM. 2010. Parasites, their relationships and the disintegration of Scrophulariaceae sensu lato. Curtis Bot Mag 26: 286–313.

    Article  Google Scholar 

  • Feild TS, Brodribb TJ. 2005. A unique mode of parasitism in the conifer coral tree Parasitaxus ustus (Podocarpaceae). Plant Cell Environ 28: 1316–1325.

    Article  CAS  Google Scholar 

  • Gobena D, Shimels M, Rich PJ, Ruyter-Spira C, Bouwmeester H, Kanuganti S, Mengiste T, Ejeta G. 2017. Mutation in sorghum LOW GERMINATION STIMULANT 1 alters strigolactones and causes Striga resistance. Proc Natl Acad Sci USA 114: 4471–4476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govier RN, Brown JGS, Pate JS. 1968. Hemiparasitic nutrition in angiosperms. II. Root haustoria and leaf glands of Odontites verna (Bell.) Dum. and their relevance to the abstraction of solutes from the host. New Phytol 67: 963–972.

    Article  Google Scholar 

  • Graves JD, Press MC, Smith S, Stewart GR. 1992. The carbon canopy economy of the association between cowpea and the parasitic angiosperm Striga gesnerioides. Plant Cell Environ 15: 283–288.

    Article  Google Scholar 

  • Gurney AL, Grimanelli D, Kanampiu F, Hoisington D, Scholes JD, Press MC. 2003. Novel sources of resistance to Striga hermonthica in Tripsacum dactyloides, a wild relative of maize. New Phytol 160: 557–568.

    Article  PubMed  Google Scholar 

  • Hibberd JM, Quick WP, Press MC, Scholes JD, Jeschke WD. 1999. Solute fluxes from tobacco to the parasitic angiosperm Orobanche cernua and the influence of infection on host carbon and nitrogen relations. Plant Cell Environ 22: 937–947.

    Article  CAS  Google Scholar 

  • Jeschke WD, Bäumel P, Räth N. 1995. Partitioning of nutrients in the system Cuscuta reflexa-Lupinus albus. Asp Appl Biol 42: 71–79.

    Google Scholar 

  • Jeschke WD, Bäumel P, Räth N, Czygan F-C, Proksch P. 1994. Modelling of the flows and partitioning of carbon and nitrogen in the holoparasite Cuscuta reflexa Roxb. and its host Lupinus albus L.: II. Flows between host and parasite and within the parasitized host. J Exp Bot 45: 801–812.

    Article  CAS  Google Scholar 

  • Jeschke WD, Hilpert A. 1997. Sink-stimulated photosynthesis and sink-dependent increase in nitrate uptake: nitrogen and carbon relations of the parasitic association Cuscuta reflexa–Ricinus communis. Plant Cell Environ 20: 47–56.

    Article  CAS  Google Scholar 

  • Jones GP, Rao KS, Tucker DJ, Richardson B, Barnes A, Rivett DE. 1995. Antimicrobial activity of santalbic acid from the oil of Santalum acuminatum (quandong). Intern J Pharmacogn 33: 120–123.

    Article  CAS  Google Scholar 

  • Kaiser B, Vogg G, Fürst UB, Albert M. 2015. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants. Front Plant Sci 6: 45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan ZR, Hassanali A, Overholt W, Khamis TM, Hooper AM, Pickett JA, Wadhams LJ, Woodcock CM. 2002. Control of witchweed Striga hermonthica by intercropping with Desmodium spp., and the mechanism defined as allelopathic. J Chem Ecol 28: 1871–1885.

    Article  CAS  PubMed  Google Scholar 

  • Kim G, LeBlanc ML, Wafula EK, dePamphilis CW, Westwood JH. 2014. Genomic-scale exchange of mRNA between a parasitic plant and its hosts. Science 345: 808–811.

    Article  CAS  PubMed  Google Scholar 

  • Klaren CH. 1975. Physiological aspects of the hemiparasite Rhinanthus serotinus. University of Groningen, the Netherlands.

    Google Scholar 

  • Klaren CH, Van de Dijk SJ. 1976. Water relations of the hemiparasite Rhinanthus serotinus before and after attachment. Physiol Plant 38: 121–125.

    Article  Google Scholar 

  • Kuo J, Pate JS, Davidson NJ. 1989. Ultrastructure of the haustorial interface and apoplastic continuum between host and the root hemiparasite Olax phyllanthi (Labill.) R. Br. (Olacaceae). Protoplasma 150: 27–39.

    Article  Google Scholar 

  • Lendzemo VW, Kuyper TW, Kropff MJ, Van Ast A. 2005. Field inoculation with arbuscular mycorrhizal fungi reduces Striga hermonthica performance on cereal crops and has the potential to contribute to integrated Striga management. Field Crops Res 91: 51–61.

    Article  Google Scholar 

  • Lendzemo VW, Kuyper TW, Matusova R, Bouwmeester HJ, Van Ast A. 2007. Colonization by arbuscular mycorrhizal fungi of sorghum leads to reduced germination and subsequent attachment and emergence of Striga hermonthica. Plant Signal Behav 2.

    Article  Google Scholar 

  • Li J, Timko MP. 2009. Gene-for-gene resistance in Striga-cowpea associations. Science 325: 1094–1094.

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Lin H, Gu L, Gao J, Tzeng C-M. 2016. Herba Cistanche (rou cong-rong): one of the best pharmaceutical gifts of traditional Chinese medicine. Front Pharmacol 7: 41.

    PubMed  PubMed Central  Google Scholar 

  • Lins RD, Colquhoun JB, Mallory-Smith CA. 2006. Investigation of wheat as a trap crop for control of Orobanche minor. Weed Res 46: 313–318.

    Article  Google Scholar 

  • Logan DC, Stewart GR. 1991. Role of ethylene in the germination of the hemiparasite Striga hermonthica. Plant Physiol 97: 1435–1438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loveys BR, Loveys BR, Tyerman SD. 2001a. Water relations and gas exchange of the root hemiparasite Santalum acuminatum (quandong). Aust J Bot 49: 479–486.

    Article  Google Scholar 

  • Loveys BR, Tyerman SD, Loveys BR. 2001b. Transfer of photosynthate and naturally occurring insecticidal compounds from host plants to the root hemiparasite Santalum acuminatum (Santalaceae). Aust J Bot 49: 9–16.

    Article  CAS  Google Scholar 

  • Marshall JD, Ehleringer JR. 1990. Are xylem-tapping mistletoes partially heterotrophic? Oecologia 84: 244–248.

    Article  PubMed  Google Scholar 

  • Mescher MC, Runyon J, De Moraes CM. 2006. Plant host finding by parasitic plants. Plant Signal Behav 1: 284–286.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nge FJ, Ranathunge K, Kotula L, Lambers H. 2019. Strong host preference of a root hemiparasite (Santalum acuminatum) limits its distribution: beggars can be choosers. Plant Soil 437: 159–177.

    Article  CAS  Google Scholar 

  • Nickrent DL, Duff RJ, Colwell AE, Wolfe AD, Young ND, Steiner KE, dePamphilis CW 1998. Molecular phylogenetic and evolutionary studies of parasitic plants. In: Soltis DE, Soltis PS, Doyle JJ eds. Molecular Systematics of Plants II: DNA Sequencing. Boston, MA: Springer US, 211–241.

    Chapter  Google Scholar 

  • Odhiambo JA, Vanlauwe B, Tabu IM, Kanampiu F, Khan Z. 2011. Effect of intercropping maize and soybeans on Striga hermonthica parasitism and yield of maize. Arch Phytopathol Plant Protect 44: 158–167.

    Article  Google Scholar 

  • Pate JS. 2001. Haustoria in action: case studies of nitrogen acquisition by woody xylem-tapping hemiparasites from their hosts. Protoplasma 215: 204–217.

    Article  CAS  PubMed  Google Scholar 

  • Pate JS, True KC, Rasins E. 1991. Xylem transport and storage of amino acids by S.W. Australian mistletoes and their hosts. J Exp Bot 42: 441–451.

    Article  CAS  Google Scholar 

  • Popp M, Mensen R, Richter A, Buschmann H, von Willert DJ. 1995. Solutes and succulence in southern African mistletoes. Trees 9: 303–310.

    Article  Google Scholar 

  • Press MC. 1998. Dracula or Robin Hood? A functional role for root hemiparasites in nutrient poor ecosystems. Oikos 82: 609–611.

    Article  Google Scholar 

  • Press MC, Nour JJ, Bebawi FF, Stewart GR. 1989. Antitranspirant-induced heat stress in the parasitic plant Striga hermonthica - a novel method of control. J Exp Bot 40: 585–591.

    Article  CAS  Google Scholar 

  • Press MC, Phoenix GK. 2005. Impacts of parasitic plants on natural communities. New Phytol 166: 737–751.

    Article  PubMed  Google Scholar 

  • Quested HM, Press MC, Callaghan TV, Cornelissen HJ. 2002. The hemiparasitic angiosperm Bartsia alpina has the potential to accelerate decomposition in sub-arctic communities. Oecologia 130: 88–95.

    Article  PubMed  Google Scholar 

  • Richter A, Popp M. 1992. The physiological importance of accumulation of cyclitols in Viscum album L. New Phytol 121: 431–438.

    Article  CAS  PubMed  Google Scholar 

  • Richter A, Popp M, Mensen R, Stewart G, Willert D. 1995. Heterotrophic carbon gain of the parasitic angiosperm Tapinanthus oleifolius. Funct Plant Biol 22: 537–544.

    Article  CAS  Google Scholar 

  • Rispail N, Dita M-A, Gonzalez-Verdejo C, Perez-de-Luque A, Castillejo M-A, Prats E, Roman B, Jorrin J, Rubiales D. 2007. Plant resistance to parasitic plants: molecular approaches to an old foe. New Phytol 173: 703–712.

    Article  CAS  PubMed  Google Scholar 

  • Rothe K, Diettrich B, Rahfeld B, Luckner M. 1999. Uptake of phloem-specific cardenolides by Cuscuta sp. growing on Digitalis lanata and Digitalis purpurea. Phytochemistry 51: 357–361.

    Article  CAS  Google Scholar 

  • Rubiales D, Fernández-Aparicio M. 2012. Innovations in parasitic weeds management in legume crops. A review. Agron Sustain Develop 32: 433–449.

    Article  CAS  Google Scholar 

  • Runyon JB, Mescher MC, De Moraes CM. 2006. Volatile chemical cues guide host location and host selection by parasitic plants. Science 313: 1964.

    Article  CAS  PubMed  Google Scholar 

  • Runyon JB, Tooker JF, Mescher MC, Moraes CM 2010. Parasitic plants in agriculture: chemical ecology of germination and host-plant location as targets for sustainable control: a review. In: Lichtfouse E ed. Organic Farming, Pest Control and Remediation of Soil Pollutants: Springer Netherlands, 123–136.

    Google Scholar 

  • Scalon MC, Wright IJ. 2017. Leaf trait adaptations of xylem-tapping mistletoes and their hosts in sites of contrasting aridity. Plant Soil 415: 117–130.

    Article  CAS  Google Scholar 

  • Schulze E-D, Ehleringer JR. 1984. The effect of nitrogen supply on growth and water-use efficiency of xylem-tapping mistletoes. Planta 162: 268–275.

    Article  CAS  PubMed  Google Scholar 

  • Schulze E-D, Lange OL, Ziegler H, Gebauer G. 1991. Carbon and nitrogen isotope ratios of mistletoes growing on nitrogen and non-nitrogen fixing hosts and on CAM plants in the Namib desert confirm partial heterotrophy. Oecologia 88: 457–462.

    Article  PubMed  Google Scholar 

  • Shah N, Smirnoff N, Stewart GR. 1987. Photosynthesis and stomatal characteristics of Striga hermonthica in relation to its parasitic habit. Physiol Plant 69: 699–703.

    Article  Google Scholar 

  • Shahid S, Kim G, Johnson NR, Wafula E, Wang F, Coruh C, Bernal-Galeano V, Phifer T, dePamphilis CW, Westwood JH, Axtell MJ. 2018. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 553: 82–85.

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Hong L, Ye W, Cao H, Wang Z. 2007. The influence of the holoparasitic plant Cuscuta campestris on the growth and photosynthesis of its host Mikania micrantha. J Exp Bot 58: 2929–2937.

    Article  CAS  PubMed  Google Scholar 

  • Siame BA, Weerasuriya Y, Wood K, Ejeta G, Butler LG. 1993. Isolation of strigol, a germination stimulant for Striga asiatica, from host plants. J Agric Sci Food Chem 41: 1486–1491.

    Article  CAS  Google Scholar 

  • Smith CE, Dudley MW, Lynn DG. 1990. Vegetative/parasitic transition: control and plasticity in Striga development. Plant Physiol 93: 208–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JD, Woldemariam MG, Mescher MC, Jander G, De Moraes CM. 2016. Glucosinolates from host plants influence growth of the parasitic plant Cuscuta gronovii and its susceptibility to aphid feeding. Plant Physiol 172: 181–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, Yu W-B, Tan Y, Liu B, Yao X, Jin J, Padmanaba M, Yang J-B, Corlett RT. 2017. Evolutionary comparisons of the chloroplast genome in Lauraceae and insights into loss events in the magnoliids. Genome Biol Evol 9: 2354–2364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart GR, Press MC. 1990. The physiology and biochemistry of parasitic angiosperms. Annu Rev Plant Biol 41: 127–151.

    Article  CAS  Google Scholar 

  • Taylor A, Martin J, Seel WE. 1996. Physiology of the parasitic association between maize and witchweed (Striga hermonthica): is ABA involved? J Exp Bot 47: 1057–1065.

    Article  CAS  Google Scholar 

  • Tennakoon KU, Pate JS. 1996. Effects of parasitism by a mistletoe on the structure and functioning of branches of its host. Plant Cell Environ 19: 517–528.

    Article  Google Scholar 

  • Veenendaal EM, Abebrese IK, Walsh MF, Swaine MD. 1996. Root hemiparasitism in a West African rainforest tree Okoubaka aubrevillei (Santalaceae). New Phytol 134: 487–493.

    Article  Google Scholar 

  • Watling JR, Press MC. 2001. Impacts of infection by parasitic angiosperms on host photosynthesis. Plant Biol 3: 244–250.

    Article  CAS  Google Scholar 

  • Watson DM. 2009. Parasitic plants as facilitators: more Dryad than Dracula? J Ecol 97: 1151–1159.

    Article  Google Scholar 

  • Westwood JH, Yoder JI, Timko MP, dePamphilis CW. 2010. The evolution of parasitism in plants. Trends Plant Sci 15: 227–235.

    Article  CAS  PubMed  Google Scholar 

  • Wolswinkel P, Ammerlaan A, Peters HFC. 1984. Phloem unloading of amino acids at the site of attachment of Cuscuta europaea. Plant Physiol 75: 13–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoneyama K, Arakawa R, Ishimoto K, Kim HI, Kisugi T, Xie X, Nomura T, Kanampiu F, Yokota T, Ezawa T, Yoneyama K. 2015. Difference in Striga-susceptibility is reflected in strigolactone secretion profile, but not in compatibility and host preference in arbuscular mycorrhizal symbiosis in two maize cultivars. New Phytol 206: 983–989.

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K. 2007a. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227: 125–132.

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H. 2007b. Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225: 1031–1038.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Cui S, Ichihashi Y, Shirasu K. 2016. The haustorium, a specialized invasive organ in parasitic plants. Annu Rev Plant Biol 67: 643–667.

    Article  CAS  PubMed  Google Scholar 

  • Ziegler H 1975. Nature of transported substances. In: Zimmermann MH, Milburn JA eds. Encyclopedia of Plant Physiology, New Series. Berlin: Springer Verlag, 59–100.

    Google Scholar 

  • Zwanenburg B, Mwakaboko AS, Reizelman A, Anilkumar G, Sethumadhavan D. 2009. Structure and function of natural and synthetic signalling molecules in parasitic weed germination. Pest Manage Sci 65: 478–491.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lambers, H., Oliveira, R.S. (2019). Biotic Influences: Parasitic Associations. In: Plant Physiological Ecology. Springer, Cham. https://doi.org/10.1007/978-3-030-29639-1_15

Download citation

Publish with us

Policies and ethics