Skip to main content

Comparative Phytochemical Contents and Antioxidant Activities of Tapinanthus cordifolius and Irvingia wombolu Leaf Extracts

  • Chapter
  • First Online:
Biotechnological Approaches to Sustainable Development Goals

Abstract

The generation of free radicals results in an overwhelming oxidative status thereby resulting in oxidative stress (OS). OS is significant in the aetiology and pathogenesis of many metabolic conditions such as diabetes, cancer, and cardiovascular disease. This study was designed to evaluate the phytochemical contents and antioxidant activity of the ethanolic (85% w/v) leaf extracts and solvent fractions (n-hexane, ethylacetate, n-butanol, and aqueous of Tapinanthus cordifolius (TC) and Irvingia wombolu (IW). Ethanolic leaf extracts of TC and IW and the solvent fractions were subjected to preliminary phytochemical screening and antioxidant assessment using 1, 1-diphenyl-2-picryl hydroxyl (DPPH), 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and nitric oxide (NO) radical scavenging activities and compared. The radical scavenging activity was determined by half maximum inhibition concentration (IC50). Comparative phytochemical screening of TC and IW ethanolic extracts and solvent fractions revealed the presence of phenols, saponins, tannins, flavonoids, alkaloids, and anthraquinones in both plants and steroid only in IW and cardiac glycoside only in TC. The difference between the total phenol (TP) content of IW and TC were not significant, while the total flavonoid (TF) content of TC was significantly (P < 0.05) increased compared to that of IW. The IC50 values of the ABTS, DPPH, and NO scavenging assays for TC, IW, and ascorbic acids are 2.479 ± 0.096, 2.475 ± 0.0096, and 3.162554 ± 0.4230 μg/mL; 1.275 ± 0.004, 7.293 ± 0.0045, and 0.4361 ± 0.0076 μg/mL; and 8.9608 ± 0.0054, 1.4278 ± 0.0005, and 0.8357 ± 0.0029 μg/mL, respectively. The difference between the ABTS, DPPH, and NO IC50 values of TC was significantly decreased compared to the IW. This study revealed that TC has the highest scavenging activity in various radical systems. The antioxidant activity of IW and TC extracts could be due to flavonoids and phenols. This study justifies the therapeutic potential of the plants as antioxidant agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adebayo, A. H., Yakubu, O. F., & Bakare-Akpata, O. (2020). Uptake, metabolism and toxicity of selenium in tropical plants. In Importance of selenium in the environment and human health. Intech Open.

    Google Scholar 

  • Adesina, S. K., Illoh, H. C., Johnny, I. I., & Jacobs, I. E. (2013). African mistletoes (Loranthaceae); ethnopharmacology, chemistry and medicinal values: An update. African Journal of Traditional, Complementary and Alternative Medicines, 10(4), 161–170.

    Google Scholar 

  • Airaodion, A. I., Ibrahim, A. H., Ogbuagu, U., Ogbuagu, E. O., Awosanya, O. O., Akinmolayan, J. D., Njoku, O. C., Obajimi, O. O., Adeniji, A. R., & Adekale, O. A. (2019). Evaluation of phytochemical content and antioxidant potential of Ocimum gratissimum and Telfairia occidentalis leaves. Asian Journal of Research in Medical and Pharmaceutical Sciences, 7(1), 1–11.

    Google Scholar 

  • Bong, F. J., Chear, N. J. Y., Ramanathan, S., Mohana-Kumaran, N., Subramaniam, S., & Chew, B. L. (2021). The development of callus and cell suspension cultures of Sabah Snake Grass (Clinacanthus nutans) for the production of flavonoids and phenolics. Biocatalysis and Agricultural Biotechnology, 33, 101977.

    Article  Google Scholar 

  • Builder, M. I., Joseph, S. O., Olugbemi, T. O., & Akande, T. (2019). Toxicity studies of extract of African Mistletoe: Agelanthus Dodoneifolius Polh and Wiens in Rats. Evaluation, 4th. 35.188.205.12.

    Google Scholar 

  • Burkill, H. M. (1985). The useful plants of west tropical Africa (pp. 548–560). 3 (families J-L) Royal Botanical Gardens.

    Google Scholar 

  • De Menezes, B. B., Frescura, L. M., Duarte, R., Villetti, M. A., & Da Rosa, M. B. (2021). A critical examination of the DPPH method: Mistakes and inconsistencies in stoichiometry and IC50 determination by UV–Vis spectroscopy. Analytica Chimica Acta, 1157, 338398.

    Article  Google Scholar 

  • Donoso-Bustamante, V., Borrego, E. A., Schiaffino-Bustamante, Y., Gutiérrez, D. A., Millas-Vargas, J. P., Fuentes-Retamal, S., Correa, P., Carrillo, I., Aguilera, R. J., Miranda, D., & Chávez-Báez, I. (2020). An acyl hydroquinone derivative produces OXPHOS uncoupling and sensitization to BH3 mimetic ABT-199 (Venetoclax) in human promyelocytic leukemia cells. Bioorganic Chemistry, 100, 103935.

    Article  Google Scholar 

  • Echegaray, N., Munekata, P. E., Centeno, J. A., Domínguez, R., Pateiro, M., Carballo, J., & Lorenzo, J. M. (2021). Total phenol content and antioxidant activity of different celta pig carcass locations as affected by the finishing diet (chestnuts or commercial feed). Antioxidants, 10(1), 5.

    Article  Google Scholar 

  • Esievo, K. B., Anthony, S. O., Fatokun, O. T., & Kunle, O. F. (2018). Ficus capensis Thumb. (Moraceae): Review of its ethnomedicinal uses, pharmacological activities and phytochemical constituents. Archives of Current Research International, 12, 1–7.

    Article  Google Scholar 

  • Gaber, N. B., El-Dahy, S. I., & Shalaby, E. A. (2021). Comparison of ABTS, DPPH, permanganate, and methylene blue assays for determining antioxidant potential of successive extracts from pomegranate and guava residues. Biomass Conversion and Biorefinery, 13, 4011.

    Article  Google Scholar 

  • Ibrahim, J. A., & Ayodele, A. E. (2017). Pollen morphology as a useful taxonomic tool in delimiting the species of loranthaceae in Nigeria. International Journal of Plant & Soil Science, 20(1), 1–7.

    Google Scholar 

  • Ihegboro, G. O., Ononamadu, C. J., Afor, E., & Odogiyan, G. D. (2018). Cytotoxic and hepatocurative effect of aqueous fraction of Tapinanthus bangwensis against paracetamol-induced hepatotoxicity. Journal of Evidence-Based Integrative Medicine, 23, 2515690X18801577.

    Article  Google Scholar 

  • Iheagwam, F. N., Dania, O. E., Michael-Onuoha, H. C., Ogunlana, O. O., & Chinedu, S. N. (2020). Antidiabetic activities of Terminalia species in Nigeria. Alternative Medicine-Update, 11, 237–244.

    Google Scholar 

  • Kavitha Chandran, C. I., & Indira, G. (2016). Quantitative estimation of total phenolic, flavonoids, tannin and chlorophyll content of leaves of Strobilanthes kunthiana (Neelakurinji). Journal of Medicinal Plants, 4, 282–286.

    Google Scholar 

  • Ladipo, D. O., Fondoun, J. M., Ganga, N., Leakey, R. R. B., Temu, A. B., Melnyk, M., & Vantomme, P. (1996). Domestication of the bush mango (Irvingia spp.): some exploitable intraspecific variations in west and central Africa. Tropical Trees: The Potential for Domestication and the Rebuilding of Forest Resources. 193–205.

    Google Scholar 

  • Lee, C. H., Lui, D. T., Cheung, C. Y., Fong, C. H., Yuen, M. M., Chow, W. S., & Lam, K. S. (2020). Higher circulating adiponectin concentrations predict incident cancer in type 2 diabetes–The adiponectin paradox. The Journal of Clinical Endocrinology and Metabolism, 105(4), e1387–e1396.

    Article  Google Scholar 

  • Mgbemena, N. M., Ilechukwu, I., Okwunodolu, F. U., Chukwurah, J. V. O., & Lucky, I. B. (2019). Chemical composition, proximate and phytochemical analysis of Irvingia gabonensis and Irvingia wombolu peels, seed coat, leaves and seeds. Ovidius University Annals of Chemistry, 30(1), 65–69.

    Article  Google Scholar 

  • Oduntan, A.O., Babalola, S.O., Kenneth-Obosi, O., Awe, O.F.E., Olabode, I.A., Egbekunle, K., Igwe, H.C., Fajinmi, O.B., Oduntan, O.O. & Afolayan, S.O. (2019). Evaluation of proximate, amino acid profile and oil characterisation of Irvingia wombolu fruit pulp and peel. International Food Research Journal. 26(4), 1371–1377.

    Google Scholar 

  • Ojemekele, O., Irabor, F., Ebohon, O., & Omoregie, E. S. (2017). A comparative study on the phytochemical screening and in vitro antioxidant activity of methanol leaf extracts of Chrysophyllum albidum and Irvingia gabonensis. Haya: Saudi Journal of Life Science, 2(3), 58–64.

    Google Scholar 

  • Sarkar, S., Das, D., Dutta, P., Kalita, J., Wann, S. B., & Manna, P. (2020). Chitosan: A promising therapeutic agent and effective drug delivery system in managing diabetes mellitus. Carbohydrate Polymers. 116594.

    Google Scholar 

  • Shaikh, J. R., & Patil, M. K. (2020). Qualitative tests for preliminary phytochemical screening: An overview. International Journal of Chemical Studies, 8(2), 603–608.

    Article  Google Scholar 

  • Ugoeze, K. C., Aja, P. C., Nwachukwu, N., Chinko, B. C., & Egwurugwu, J. N. (2020). Assessment of the phytoconstituents and optimal applicable concentration of aqueous extract of Azadirachta indica leaves for wound healing in male Wistar rats. Thai Journal of Pharmaceutical Science, 45(1), 8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amarachi, CE., Olamilekan, A.N., Adamu, A., Humphery, A.A., Olujoke, O.O. (2023). Comparative Phytochemical Contents and Antioxidant Activities of Tapinanthus cordifolius and Irvingia wombolu Leaf Extracts. In: Isibor, P.O., Akinduti, P., Oranusi, S.U., Popoola, J.O. (eds) Biotechnological Approaches to Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-031-33370-5_15

Download citation

Publish with us

Policies and ethics