Skip to main content

Mites on Plants

  • Chapter
  • First Online:
Mites: Ecology, Evolution & Behaviour

Abstract

Pondering imponderables may not be scientific, but all hypotheses have to start somewhere. When Terry Erwin (1982) published his estimate of 30 million living species of arthropods, up to 20 times that of previous estimates, much brouhaha ensued. His basic conclusion, however, “that current estimates of Arthropod species numbers [have been] grossly underestimated” is now common wisdom. Erwin’s estimate was a towering house of assumptions based on the diversity of beetles from the canopy of a single tree species in a seasonal forest in Panama. At the time, little was known of mite diversity in rainforest canopies, so mites played little role in his estimate, other than being part of the 60 % of described arthropods that are not beetles. One of Erwin’s assumptions was that the canopy fauna was twice as diverse as the forest floor fauna. As we learned in Chap. 6, the centres of mite diversity have long been thought to be in the soil and recent research seems to support that assumption (e.g. Young et al. 2012). Could mites on plants be twice as diverse as in the soil? (Fig. 8.1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adar, E., Inbar, M., Shira, G., Doron, N., Zhang, Z.-Q., & Palevsky, E. (2012). Plant-feeding and non-plant feeding phytoseiids: Differences in behavior and cheliceral morphology. Experimental & Applied Acarology, 58, 341–357.

    Google Scholar 

  • Affeld, K., Worner, S., Didham, R. K., Sullivan, J., Henderson, R., Olarte, J. M., Thorpe, S., Clunie, L., Early, J., Emberson, R., Johns, P., Dugdale, J., Mound, L., Smithers, C., Pollard, S., & Ward, J. (2009). The invertebrate fauna of epiphyte mats in the canopy of northern rata (Myrtaceae: Metrosideros robusta A. Cunn.) on the West Coast of the South Island, New Zealand. New Zealand Journal of Zoology, 36, 177–202.

    Google Scholar 

  • Agwaral, A. A. (1997). Do leaf domatia mediate a plant–mite mutualism? An experimental test of the effects on predators and herbivores. Ecological Entomology, 22, 371–376.

    Google Scholar 

  • Agwaral, A. A., & Karban, R. (1997). Domatia mediate plant–arthropod mutualism. Nature, 387, 562–563.

    Google Scholar 

  • Alberti, G., Norton, R. A., Adis, J., Fernandez, N. A., Franklin, E., Kratzmann, M., Moreno, M. I., Weigmann, G., & St, W. (1997). Porose integumental organs of oribatid mites (Acari, Oribatida). 2. Fine structure. Zoologica, 146, 33–114.

    Google Scholar 

  • Amrine, J. W., Jr. (1996). Phyllocoptes fructiphilus and biological control of multiflora rose. In E. E. Lindquist, M. W. Sabelis, & J. Bruin (Eds.), Eriophyid mites: Their biology, natural enemies and control (6th ed., pp. 741–749). Amsterdam: Elsevier.

    Google Scholar 

  • Amrine, J. W., Jr., & Stasny, T. A. (1994). Catalog of the Eriophyoidea (Acarina: Prostigmata) of the world. West Boomfield: Indira Publishing House.

    Google Scholar 

  • André, H. M. (1984). Notes on the ecology of corticolous epiphyte dwellers. 3. Oribatida. Acarologia, 25, 385–396.

    Google Scholar 

  • André, H. M. (1985). Associations between corticolous microarthropod communities and epiphytic cover on bark. Holarctic Ecology, 8, 113–119.

    Google Scholar 

  • André, H. M. (1986). Notes on the ecology of corticolous epiphyte dwellers. 4. Actinedida (especially Tydeidae) and Gamasida (especially Phytoseiidae). Acarologia, 26, 107–115.

    Google Scholar 

  • Andres, L. A. (1983). Considerations in the use of phytophagous mites for the biological control of weeds. In M. A. Hoy, G. L. Cunningham, & L. Knutson (Eds.), Biological control of pests by mites (Vol. 3304, pp. 53–56). Berkeley: University of California Agriculture Experiment Station Special Publication.

    Google Scholar 

  • Annells, A. J. (1995). The reproductive biology and mating behaviour of redlegged earth mite: An overview. Proceedings of the Second National Workshop on Redlegged Earth Mite, Lucerne Flea and Blue Oat Mite, (pp. 29–31). Victoria: Victoria Printing.

    Google Scholar 

  • Antor, R. J., & Garcia, M. B. (1995). A new mite–plant association: Mites living amongst the adhesive traps of a carnivorous plant. Oecologia, 101, 51–54.

    Google Scholar 

  • Aoki, J.-i. (1966). Epizoic symbiosis: An oribatid mite, Symbioribates papuensis, representing a new family, from cryptogamic plants growing on the backs of Papuan weevils (Acari: Cryptostigmata). Pacific Insects, 8, 281–289.

    Google Scholar 

  • Aoki, J.-i. (1992). Oribatid mites inhabiting orchid plants in greenhouse. Journal of the Acarological Society of Japan, 1(1), 7–13.

    Google Scholar 

  • Aponte, O., & McMurtry, J. A. (1997). Damage on ‘Hass’ avocado leaves, webbing and nesting behaviour of Oligonychus perseae (Acari: Tetranychidae). Experimental & Applied Acarology, 21, 265–272.

    Google Scholar 

  • Arthur, A. L., Weeks, A. R., Hill, M. P., et al. (2011). The distribution, abundance and life cycle of the pest mites Balaustium medicagoense (Prostigmata: Erythraeidae) and Bryobia spp. (Prostigmata: Tetranychidae) in Australia. Australian Journal of Entomology, 50, 22–36. doi:10.1111/j.1440-6055.2010.00778.

    Google Scholar 

  • Atcheson, W. C. (1963). An ecological study of three species of mites on American Linden. Journal of Economic Entomology, 46, 705.

    Google Scholar 

  • Baker, E. W., & Delfinado-Baker, M. (1985). An unusual new species of Neocypholaelaps from the nests of stingless bees (Apidae: Meliponnae). International Journal of Acarology, 11, 227–232.

    Google Scholar 

  • Beard, J., & Ochoa, R. (2010). Ontogenetic modification in the Tuckerellidae (Acari: Tetranychoidea). International Journal of Acarology, 36, 169–173. doi:10.1080/01647950903555459.

    Google Scholar 

  • Beard, J., & Walter, D. E. (2010). New spider mite genus (Prostigmata: Tetranychidae) from Australia & New Zealand, with a discussion of Yezonychus Ehara. Zootaxa, 2578, 1–24.

    Google Scholar 

  • Beaulieu, F., & Weeks, A. R. (2007). Free-living mesostigmatic mites in Australia: Their roles in biological control and bioindication. Australian Journal of Experimental Agriculture, 47, 460–478. doi:10.1071/EA05341.

    Google Scholar 

  • Beaulieu, F., Walter, D. E., Proctor, H. C., Kitching, R. L., & Menzel, F. (2006). Mesostigmatid mites (Acari: Mesostigmata) on rainforest tree trunks: Arboreal specialists, but substrate generalists? Experimental & Applied Acarology, 39, 25–40.

    Google Scholar 

  • Beaulieu, F., Walter, D. E., Proctor, H. C., & Kitching, R. L. (2010). The canopy starts at 0.5 m: Predatory mites (Acari: Mesostigmata) differ between rain forest floor soil and suspended soil at any height. Biotropica, 42, 704–709.

    Google Scholar 

  • Behan-Pelletier, V. M. (1996). Naiazetes reevesi n g, n sp. (Acari: Oribatida: Zetomimidae) from semi-aquatic habitats of eastern North America. Acarologia, 37, 345–355.

    Google Scholar 

  • Behan-Pelletier, V. M., Clayton, M., & Humble, L. (2001). Parapirnodus (Acari: Oribatida: Scheloribatidae) of canopy habitats in western Canada. Acarologia (Paris), 42, 75–88.

    Google Scholar 

  • Behan-Pelletier, V. M., & Walter, D. E. (2007). Phylleremus n. gen., from leaves of deciduous trees in eastern Australia (Oribatida: Licneremaeoidea). Zootaxa, 1387, 1–17.

    Google Scholar 

  • Boczek, J., & Shevchenko, V. G. (1996). Ancient associations: Eriophyoid mites on gymnosperms. In E. E. Lindquist, M. W. Sabelis, & J. Bruin (Eds.), Eriophyoid mites: Their biology, natural enemies and control (pp. 217–226). Amsterdam: Elsevier.

    Google Scholar 

  • Boggs, C. L., & Gilbert, L. E. (1987). Spatial and temporal distribution of Lantana mites phoretic on butterflies. Biotropica, 19, 301–305.

    Google Scholar 

  • Bolland, H. R., Gutierrez, J., & Flechtmann, C. H. W. (1998). World catalogue of the spider mite family (Acari: Tetranychidae). Brill: Leiden.

    Google Scholar 

  • Boughton, A. J., & Pemberton, R. W. (2011). Limited field establishment of a weed biocontrol agent, Floracarus perrepae (Acariformes: Eriophyidae), against old world climbing fern in Florida – A possible role of mite resistant plant genotypes. Environmental Entomology, 40, 1448–1457. doi:10.1603/EN11030.

    PubMed  Google Scholar 

  • Bridges, J. R., & Moser, J. C. (1986). Relationship of phoretic mites (Acari: Tarsonemidae) to the blue-staining fungus Ceratocystis minor in trees infested by southern pine beetle (Coleoptera: Scolytidae). Environmental Entomology, 15, 951–953.

    Google Scholar 

  • Briese, D. T., & Cullen, J. M. (2001). The use and usefulness of mites in biological control of weeds. In R. B. Halliday, D. E. Walter, H. C. Proctor, R. A. Norton, & M. J. Colloff (Eds.), Acarology: Proceedings of the 10th International Congress of Acarology (pp. 453–463). Melbourne: CSIRO Publishing.

    Google Scholar 

  • Bruce-Oliver, S. J., Hoy, M. A., & Yaninek, J. S. (1996). Effect of some food sources associated with cassava in Africa on the development, fecundity and longevity of Euseius fustis (Pritchard and Baker) (Acari: Phytoseiidae). Experimental & Applied Acarology, 20, 73–85.

    Google Scholar 

  • Bruin, J., Sabelis, M. W., & Dicke, M. (1995). Do plants tap SOS signals from their infested neighbours? Trends In Ecology and Evolution, 10, 167–170.

    PubMed  CAS  Google Scholar 

  • Cardoza, Y. J., Moser, J. C., Klepzig, K. D., & Raffa, K. F. (2008). Multipartite symbioses among fungi, mites, nematodes, and the spruce beetle, Dendroctonus rufipennis. Environmental Entomology, 37, 956–963. doi:10.1603/0046-225X (2008)37[956:MSAFMN]2.0.CO;2.

    PubMed  Google Scholar 

  • Carèsche, L. A., & Wapshere, A. J. (1974). Biology and host specificity of the Chondrilla gall mite Aceria chondrillae (G. Can.) (Acarina, Eriophyidae). Bulletin of Entomological Research, 64, 183–192.

    Google Scholar 

  • Chant, D. A., & McMurtry, J. A. (1994). A review of the subfamilies Phytoseiinae and Typhlodrominae (Acari: Phytoseiidae). International Journal of Acarology, 20, 223–310.

    Google Scholar 

  • Charles, J. G., & White, V. (1988). Airborne dispersal of Phytoseiulus persimilis (Acarina: Phytoseiidae) from a raspberry garden in New Zealand. Experimental & Applied Acarology, 5, 47–54.

    Google Scholar 

  • Clements, D. R., & Harmsen, R. (1992). Stigmaeid–phytoseiid interactions and the impact of natural enemy complexes on plant-inhabiting mites. Experimental & Applied Acarology, 14, 327–341.

    Google Scholar 

  • Colloff, M. J. (2010). The hyperdiverse oribatid mite genus Scapheremaeus (Acari: Oribatida: Cymbaeremaeidae) in Australia, with descriptions of new species and consideration of biogeographical affinities. Zootaxa, 2475, 1–38. 112 species.

    Google Scholar 

  • Colloff, M. J. (2011). A new genus of oribatid mite, Spineremaeus gen. nov. and three new species of Scapheremaeus (Acari: Oribatida: Cymbaeremaeidae) from Norfolk Island, South-west Pacific, and their biogeographical affinities. Zootaxa, 2828, 19–37.

    Google Scholar 

  • Colloff, M. J., & Cairns, A. (2011). A novel association between oribatid mites and leafy liverworts (Marchantiophyta: Jungermanniidae), with a description of a new species of Birobates Balogh, 1970 (Acari: Oribatida: Oripodidae). Australian Journal of Entomology, 50, 72–77.

    Google Scholar 

  • Colloff, M. J., & Cameron, S. L. (2009). Revision of the oribatid mite genus Austronothrus Hammer (Acari: Oribatida): sexual dimorphism and a re-evaluation of the phylogenetic relationships of the family Crotoniidae. Invertebrate Systematics, 23, 87–110. doi:10.1071/IS08032.

    CAS  Google Scholar 

  • Colwell, R. K. (1986). Community biology and sexual selection: Lessons from hummingbird flower mites. In J. Diamond & T. J. Case (Eds.), Community ecology (pp. 406–424). New York: Harper and Row.

    Google Scholar 

  • Colwell, R. K. (1995). Effects of nectar consumption by the hummingbird flower mite Proctolaelaps kirmsei on nectar availability in Hamelia patens. Biotropica, 27, 206–217.

    Google Scholar 

  • Colwell, R. K., & Naeem, S. (1994). Life-history patterns of hummingbird flower mites in relation to host phenology and morphology. In M. A. Houck (Ed.), Mites: Ecological and evolutionary analyses of life-history patterns (pp. 23–44). New York: Chapman & Hall.

    Google Scholar 

  • Compton, S. G. (1993). One way to be a fig. African Entomology, 1, 151–158.

    Google Scholar 

  • Croft, B. A., Blackwood, J. S., & McMurtry, J. A. (2004). Classifying life-style types of phytoseiid mites: Diagnostic traits. Experimental & Applied Acarology, 33, 247–260.

    Google Scholar 

  • Cromroy, H. L. (1983). Potential use of mites in biological control of terrestrial & aquatic weeds. In M. A. Hoy, G. L. Cunningham, & L. Knutson (Eds.), Biological control of pests by mites (3304th ed., pp. 61–66). Berkeley: University of California Agriculture Experiment Station Special Publication.

    Google Scholar 

  • Cronberg, N., Natcheva, R., & Hedlund, K. (2006). Microarthropods mediate sperm transfer in mosses. Science, 313, 1255.

    PubMed  CAS  Google Scholar 

  • Crozier, R. H. (1985). Adaptive consequences of male-haploidy. In W. Helle & M. W. Sabelis (Eds.), Spider mites, their biology, natural enemies and control (1Ath ed., pp. 201–222). Amsterdam: Elsevier.

    Google Scholar 

  • Cullen, J. M., & Moore, A. D. (1983). The influence of three populations of Aceria chondrillae on three forms of Chondrilla juncea. Journal of Applied Ecology, 20, 235–243.

    Google Scholar 

  • Cullen, J. M., Groves, R. H., et al. (1982). The influence of Aceria chondrillae on the growth and reproduction capacity of Chondrilla juncea. Journal of Applied Ecology, 19, 529–537.

    Google Scholar 

  • Davies, J. T., Ireson, J. E., & Allen, G. R. (2007). The impact of the gorse spider mite, Tetranychus lintearius, on the growth and development of gorse, Ulex europaeus. Biological Control, 41, 86–93.

    Google Scholar 

  • De Boer, J. G., & Dicke, M. (2006). Olfactory learning by predatory arthropods. Animal Biology, 56, 143–155. doi:10.1163/157075606777304221.

    Google Scholar 

  • De Moraes, G. J., McMurtry, J. A., Denmark, H. A., & Campos, C. B. (2004). A revised catalog of the mite family Phytoseiidae. Zootaxa, 434, 1–494.

    Google Scholar 

  • Dicke, M., & Sabelis, M. (1988). How plants obtain predatory mites as bodyguards. Netherlands Journal of Zoology, 38, 148–165.

    Google Scholar 

  • Dicke, M., Sabelis, M. W., Takabayashi, J., Bruin, J., & Posthumus, M. A. (1990). Plant strategies of manipulating predator–prey interactions through allelochemicals: Prospects for application in pest control. Journal of Chemical Ecology, 16, 3091–3118.

    CAS  Google Scholar 

  • Dicke, M., Takabayashi, J., Posthumus, M. A., Schutte, C., & Krips, O. E. (1998). Plant-phytoseiid interactions mediated by herbivore-induced plant volatiles: Variation in production of cues in responses of predatory mites. Experimental & Applied Acarology, 22, 311–333.

    CAS  Google Scholar 

  • Dobkin, D. S. (1985). Heterogeneity of tropical floral microclimates and the response of hummingbird flower mites. Ecology, 66, 536–543.

    Google Scholar 

  • Domrow, R. (1979). Ascid and ameroseiid mites phoretic on Australian mammals and birds. Records of the Western Australian Museum, 8, 97–116.

    Google Scholar 

  • Duso, C. (1992). Role of Amblyseius aberrans (Oud.), Typhlodromus pyri Scheuten and Amblyseius andersoni (Chant) (Acari, Phytoseiidae) in vineyards. Journal of Applied Entomology, 114, 455–462.

    Google Scholar 

  • Duso, C. (1993). Factors affecting the potential of phytoseiid mites (Acari: Phytoseiidae) as biocontrol agents in North-Italian vineyards. Experimental & Applied Acarology, 17, 241–258.

    Google Scholar 

  • Eickwort, G. C. (1994). Evolution and life-history patterns of mites associated with bees. In M. A. Houck (Ed.), Mites: Ecological and evolutionary analyses of life-history patterns (pp. 218–251). New York: Chapman & Hall.

    Google Scholar 

  • English-Loeb, G., Norton, A. P., Gadoury, D., Seem, R., & Wilcox, W. (2007). Biological control of grape powdery mildew using mycophagous mites. Plant Disease, 91, 421–429.

    Google Scholar 

  • Erwin, T. (1982). Tropical forests: Their richness in Coleoptera and other arthropod species. The Coleopterists Bulletin, 36, 74–75.

    Google Scholar 

  • Evans, G. O. (1963). The genus Neocypholaelaps Vitzthum (Acari: Mesostigmata). Annals and Magazine of Natural History, 6, 209–230.

    Google Scholar 

  • Evans, G. O. (1992). Principles of acarology. Wallingford: CAB International.

    Google Scholar 

  • Evans, G. A., Cromroy, H. L., & Ochoa, R. (1993). The Tenuipalpidae of Honduras (Tenuipalpidae: Acari). Florida Entomologist, 76, 126–155.

    Google Scholar 

  • Fan, Q.-H. (2000). The morphology of Xenocaligonellidus smileyi (Acari: Xenocaligonellidae). In Y.-L. Zhang (Ed.), Systematic and faunistic research on Chinese insects (pp. 290–297). Beijing: China Agriculture Press.

    Google Scholar 

  • Fan, Q.-H., & Zhang, Z.-Q. (2005). Raphignathoidea (Acari: Prostigmata). Fauna of New Zealand, 52, 1–400.

    Google Scholar 

  • Faraji, F., & Cornejo, X. (2006). A new Hattena Domrow (Acari: Ameroseiidae) from Ecuadorian mangroves and a new generic record for South America. International Journal of Acarology, 32, 287–291.

    Google Scholar 

  • Faraji, F., Janssen, A., & Sabelis, M. W. (2002a). The benefits of clustering eggs: The role of egg predation and larval cannibalism in a predatory mite. Oecologia, 131, 20–26.

    Google Scholar 

  • Faraji, F., Janssen, A., & Sabelis, M. W. (2002b). Oviposition patterns in a predatory mite reduce the risk of egg predation caused by prey. Ecological Entomology, 27, 660–664.

    Google Scholar 

  • Ferreira, J. A. M., Eshuis, B., Janssen, A., & Sabelis, M. W. (2008). Domatia reduce larval cannibalism in predatory mites. Ecological Entomology, 33, 374–379.

    Google Scholar 

  • Ferreira, J. A. M., Dalyson, F. S. C., Pallini, A., Sabelis, M. W., & Janssen, A. (2011). Leaf domatia reduce intraguild predation among predatory mites. Ecological Entomology, 36, 435–441.

    Google Scholar 

  • Flechtmann, C. H. W., & McMurtry, J. A. (1992). Studies on how phytoseiid mites feed on spider mites and pollen. International Journal of Acarology, 18, 157–162.

    Google Scholar 

  • Gerson, U. (1972). Mites of the genus Ledermuelleria (Prostigmata: Stigmaeidae) association with mosses in Canada. Acarologia, 13, 319–342.

    Google Scholar 

  • Gerson, U. (1985). Webbing. In A. W. Helle & M. W. Sabelis (Eds.), Spider mites, their biology, natural enemies and control (1st ed., pp. 223–232). Amsterdam: Elsevier.

    Google Scholar 

  • Gerson, U., & Izraylevich, S. (1997). A review of host utilization by Hemisarcoptes (Acari: Hemisarcoptidae) parasitic on scale insects. Systematic and Applied Acarology, 2, 33–42.

    Google Scholar 

  • Gerson, U., & Smiley, R. L. (1990). Acarine biocontrol agents: An illustrated key and manual. Melbourne: Chapman & Hall.

    Google Scholar 

  • Grostal, P., & O’Dowd, D. J. (1994). Plants, mites and mutualism: Leaf domatia and the abundance and reproduction of mites on Viburnum tinus (Caprifoliaceae). Oecologia, 97, 308–315.

    Google Scholar 

  • Guerra, T. J., Romero, G. Q., & Benson, W. W. (2010). Flower mites decrease nectar availability in the rain-forest bromeliad Neoregelia johannis. Journal of Tropical Ecology, 26, 373–379.

    Google Scholar 

  • Guitierrez, J., & Helle, W. (1985). Evolutionary changes in the Tetranychidae. In W. Helle & M. W. Sabelis (Eds.), Spider mites: Their biology, natural enemies and control (1ath ed., pp. 91–116). New York: Elsevier.

    Google Scholar 

  • Gwiazdowicz, D. J., & Lakomy, P. (2002). Mites (Acari: Gamasida) occurring in fruiting bodies of Aphyllophorales. Fragmenta Faunistica (Warsaw), 45, 81–89.

    Google Scholar 

  • Halliday, R. B. (1996). Revision of the Australian Ameroseiidae (Acarina: Mesostigmata). Invertebrate Taxonomy, 10, 179–201.

    Google Scholar 

  • Hayes, J. L. (1985). The predator–prey interaction of the mite Balaustium sp. and the pierid butterfly Colais alexandra. Ecology, 66, 300–303.

    Google Scholar 

  • Helle, W., & Sabelis, M. W. (Eds.). (1985a). Spider mites: Their biology, natural enemies, and control (1Ath ed.). New York: Elsevier.

    Google Scholar 

  • Helle, W., & Sabelis, M. W. (Eds.). (1985b). Spider mites: Their biology, natural enemies, and control (1Bth ed.). New York: Elsevier.

    Google Scholar 

  • Hessein, N. A., & Perring, T. M. (1976). Feeding habits of the Tydeidae with evidence of Homeopronematus anconai (Acari: Tydeidae) predation on Aculops lycopersici (Acari: Eriophyidae). International Journal of Acarology, 12, 215–221.

    Google Scholar 

  • Heyneman, A. J., Colwell, R. K., Naeem, S., Dobkin, D., & Hallet, B. (1991). Host plant discrimination: Experiments with hummingbird flower mites. In P. W. Price, T. M. Lewisohn, G. W. Fernandes, & W. W. Benson (Eds.), Plant animal interactions: Evolutionary ecology in tropical and temperate regions (pp. 455–485). New York: Wiley.

    Google Scholar 

  • Hill, R. L., & Stone, C. (1985). Spider mites as control agents for weeds. In W. Helle & M. W. Sabelis (Eds.), Spider mites: Their biology, natural enemies and control (1Bth ed., pp. 443–448). Amsterdam: Elsevier.

    Google Scholar 

  • Hislop, R. G., & Jeppson, L. R. (1976). Morphology of the mouthparts of several species of phytophagous mites. Annals of the Entomological Society of America, 69, 1125–1135.

    Google Scholar 

  • Ho, C.-C. (1994). A new genus and two new species of Tarsonemidae from Ficus spp. (Acari: Heterostigmata). International Journal of Acarology, 20, 189–197.

    Google Scholar 

  • Hofstetter, R. W., Cronin, J. T., Klepzig, K. D., Moser, J. C., & Ayres, M. P. (2006a). Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle. Oecologia, 147, 679–691. doi:10.1007/s00442-005-0312-0.

    PubMed  Google Scholar 

  • Hofstetter, R. W., Klepzig, K. D., Moser, J. C., & Ayres, M. P. (2006b). Seasonal dynamics of mites and fungi and their interaction with southern pine beetle. Environmental Entomology, 35, 22–30. doi:10.1603/0046-225X-35.1.22.

    Google Scholar 

  • Hofstetter, R. W., Dempsey, T. D., Klepzig, K. D., & Ayres, M. P. (2007). Temperature-dependent effects on mutualistic, antagonistic, and commensalistic interactions among insects, fungi and mites. Community Ecology, 8, 47–56. doi:10.1556/ComEc.8. 2007.1.7.

    Google Scholar 

  • Hoy, M. A. (1985). Recent advances in genetics and genetic improvement of the Phytoseiidae. Annual Review of Entomology, 30, 345–370.

    Google Scholar 

  • Hoy, M. A. (1992). Criteria for release of genetically-improved phytoseiids: An examination of the risks associated with release of biocontrol agents. Experimental & Applied Acarology, 14, 393–416.

    Google Scholar 

  • Hoy, M. A. (2000). Transgenic arthropods for pest management programs: Risks and realities. Experimental & Applied Acarology, 24, 463–495.

    CAS  Google Scholar 

  • Hoy, M. A. (2009). The predatory mite Metaseiulus occidentalis: Mitey small and mitey large genomes. Bioessays, 31, 581–590. doi:10.1002/bies.200800175.

    PubMed  CAS  Google Scholar 

  • Hoy, M. A., & Smilanick, J. M. (1979). A sex pheromone produced by immature and adult females of the predatory mite Metaseiulus occidentalis (Acarina: Phytoseiidae). Entomologia Experimentalis et Applicata, 26, 291–300.

    Google Scholar 

  • Hunt, G. S. (1996). Description of predominantly arboreal plateremaeoid mites from Eastern Australia (Acarina: Cryptostigmata: Plateremaeoidea). Records of the Australian Museum, 48, 303–324.

    Google Scholar 

  • Janzen, D. (1979). How to be a fig. Annual Review of Ecology and Systematics, 10, 13–51.

    Google Scholar 

  • Janzen, D. H. (1983). Costa Rican natural history (p. 816). Chicago: The University of Chicago Press.

    Google Scholar 

  • Jauharlina, J., Lindquist, E. E., Quinnell, R. J., Robertson, H. G., & Compton, S. G. (2012). Fig wasps as vectors of mites and nematodes. African Entomology, 20, 101–110.

    Google Scholar 

  • Jeppson, L. R., Keifer, H. H., & Baker, E. W. (1975). Mites injurious to economic plants. Berkeley: University of California Press.

    Google Scholar 

  • Kaluz, S., Literak, I., Capek, M., Konecny, A., & Koubek, P. (2011). A new mite species of the genus Lasioseius (Acarina: Gamasina, Blattisociidae) associated with the flowers of Englerina lecardii and Chalcomitra senegalensis (Aves: Nectariniidae) in Senegal. International Journal of Acarology, 37, 511–524.

    Google Scholar 

  • Kanazawa, M., Sahara, K., & Saito, Y. (2011). Silk threads function as an ‘adhesive cleaner’ for nest space in a social spider mite. Proceedings of the Royal Society B, 278, 1653–1660. doi:10.1098/rspb.2010.1761.

    PubMed  Google Scholar 

  • Karasawa, S., & Behan-Pelletier, V. (2007). Description of a sexually dimorphic oribatid mite (Arachnida: Acari: Oribatida) from canopy habitats of the Ryukyu Archipelago, southwestern Japan. Zoological Science, 24, 1051–1058.

    PubMed  Google Scholar 

  • Karban, R., English-Loeb, G., Walker, M. A., & Thaler, J. (1995). Abundance of phytoseiid mites on Vitis species: Effects of leaf hairs, domatia, prey abundance and plant phylogeny. Experimental & Applied Acarology, 19, 189–197.

    Google Scholar 

  • Karban, R., English-Loeb, G., & Hougen-Eitzman, D. (1997). Mite vaccinations for sustainable management of spider mites in vineyards. Ecological Applications, 7, 183–193.

    Google Scholar 

  • Keifer, H. H., Baker, E. W., Kono, T., Delfinado, M., & Styer, W. E. (1982). An illustrated guide to plant abnormalities caused by Eriophyid mites in North America (USDA Agricultural Handbook, Vol. 573). Washington, DC: United State Department of Agriculture.

    Google Scholar 

  • Kinn, D. N. (1971). The life cycle and behaviour of Cercoleipus coelonotus (Acarina: Mesostigmata): Including a survey of phoretic mite associates of California Scolytidae. UC Publications in Entomology, 65, 1–66.

    Google Scholar 

  • Kinn, D. N. (1987). Incidence of pinewood nematode dauer larvae and phoretic mites associated with long-horned beetles in central Louisiana. Canadian Journal of Forest Research, 17, 187–190.

    Google Scholar 

  • Kostiainen, T. S., & Hoy, M. A. (1996). The Phytoseiidae as biological control agents of pest mites and insects (Agricultural Experimentation Monograph, Vol. 17). Gainesville: University of Florida.

    Google Scholar 

  • Krantz, G. W. (1978). A manual of acarology. Corvallis: Oregon State University Bookstores.

    Google Scholar 

  • Krantz, G. W., & Lindquist, E. E. (1979). Evolution of phytophagous mites (Acari). Annual Review of Entomology, 24, 121–158.

    Google Scholar 

  • Krantz, G. W., & Walter, D. E. (Eds.), (2009). A manual of acarology (3rd ed). Lubbock: Texas Tech University Press. 807 pages; 338 b/w illustrations; 60 figures, ISBN 978-0-89672-620-8.

    Google Scholar 

  • Krisper, G., & Schuster, R. (2008). Fortuynia atlantica sp. nov., a thalassobiontic oribatid mite from the rocky coast of the Bermuda Islands (Acari: Oribatida: Fortuyniidae). Annales Zoologici, 58, 419–432. doi:10.3161/000345408X326753.

    Google Scholar 

  • Krivolutsky, D. A., & Druk, A. (1986). Fossil oribatid mites. Annual Review of Entomology, 31, 533–545.

    Google Scholar 

  • Kuznetsov, N. N., Khaustov, A. A., & Perkovsky, E. E. (2010). First record of mites of the family Stigmaeidae (Acari, Raphignathoidea) from Rovno amber with description of a new species of the genus Mediolata. Vestnik Zoologii, 44, 549–551.

    Google Scholar 

  • Labandera, C. C., Phillips, T. L., & Norton, R. A. (1997). Oribatid mites and the decomposition of plant tissues in Paleozoic coal-swamp forests. Palaios, 12, 319–353.

    Google Scholar 

  • Lara, C., & Ornelas, J. F. (2001). Nectar ‘theft’ by hummingbird flower mites and its consequences for seed set in Moussonia deppeana. Functional Ecology, 15, 78–84.

    Google Scholar 

  • Lara, C., & Ornelas, J. F. (2002). Flower mites and nectar production in six hummingbird-pollinated plants with contrasting flower longevities. Canadian Journal of Botany, 80, 1216–1229. doi:10.1139/B02-109.

    Google Scholar 

  • Lemos, F., Sarmento, R. A., Pallini, A., Dias, C. R., Sabelis, M. W., & Janssen, A. (2010). Spider mite web mediates anti-predator behaviour. Experimental & Applied Acarology, 52, 1–10.

    Google Scholar 

  • Lewontin, R. C. (1978). Adaptation. Scientific American, 239(3), 156–169.

    Google Scholar 

  • Li, J., & Hoy, M. A. (1996). Adaptibility and efficacy of transgenic and wild-type Metaseiulus occidentalis (Acari: Phytoseiidae) compared as part of a risk assessment. Experimental & Applied Acarology, 20, 563–573.

    Google Scholar 

  • Lindo, Z., & Winchester, N. N. (2006). A comparison of microarthropod assemblages with emphasis on oribatid mites in canopy suspended soils and forest floors associated with ancient western redcedar trees. Pedobiologia, 50, 31–41.

    Google Scholar 

  • Lindo, Z., Winchester, N. N., & Didham, R. K. (2008). Nested patterns of community assembly in the colonisation of artificial canopy habitats by oribatid mites. Oikos, 117, 1856–1864. doi:10.1111/j.1600-0706.2008.16920.x.

    Google Scholar 

  • Lindquist, E. E. (1963). A taxonomic review of the genus Hoploseius Berlese (Acarina: Blattisocidae). Canadian Entomologist, 95, 1175–1185.

    Google Scholar 

  • Lindquist, E. E. (1965). An unusual new species of the genus Hoploseius Berlese (Acarina: Blattisociidae) from Mexico. Canadian Entomologist, 97, 1121–1131.

    Google Scholar 

  • Lindquist, E. E. (1975). Associations between mites and other arthropods in forest floor habitats. Canadian Entomolologist, 107, 425–437.

    Google Scholar 

  • Lindquist, E. E. (1985). Discovery of sporothecae in adult female Trochometridium cross, with notes on analogous structures in Siteroptes Amerling (Acari: Heterostigmata). Experimental & Applied Acarology, 1, 73–85.

    Google Scholar 

  • Lindquist, E. E. (1986). The world genera of Tarsonemidae (Acari: Heterostigmata): A morphological, phylogenetic, and systematic revision, with a reclassification of the family-group taxa in the Heterostigmata. Memoirs of the Entomological Society of Canada, 136, 1–517.

    Google Scholar 

  • Lindquist, E. E. (1995). Remarkable convergence between two taxa of ascid mites (Acari: Mesostigmata) adapted to living in pore tubes of bracket fungi in North America, with description of Mycolaelaps new genus. Canadian Journal of Zoology, 73, 104–128.

    Google Scholar 

  • Lindquist, E. E. (1996). 1.1.1 External Anatomy and notation of structures. In E. E. Lindquist, M. W. Sabelis, & J. Bruin (Eds.), Eriophyid mites. Their biology, natural enemies and control (Vol. 6, pp. 3–31). Amsterdam: Elsevier.

    Google Scholar 

  • Lindquist, E. E. (1998). Evolution of phytophagy in trombidiform mites. Experimental & Applied Acarology, 22, 81–100.

    Google Scholar 

  • Lindquist, E. E., & Hunter, P. E. (1965). Some mites of the genus Proctolaelaps Berlese (Acarina: Blattisociidae) associated with forest insect pests. Canadian Entomologist, 97, 16–32.

    Google Scholar 

  • Lindquist, E. E., & Moraza, M. L. (2008). A new genus of flower-dwelling melicharid mites (Acari: Mesostigmata: Ascoidea) phoretic on bats and insects in Costa Rica and Brazil. Zootaxa, 1685, 1–37.

    Google Scholar 

  • Lindquist, E. E., Sabelis, M. W., & Bruin, J. (1996). Eriophyoid mites, their biology, natural enemies and control. Amsterdam: Elsevier.

    Google Scholar 

  • Lindquist, E. E., & Wu, K. W. (1991). Review of mites of the genus Mucroseius (Acari: Mesostigmata: Ascidae) associated with sawyer beetles (Cerambycidae: Monochamus and Mecynippus) and pine wood nematodes [Aphelenchoididae: Bursaphelenchus xylophilus (Steiner and Buhrer) Nickle], with descriptions of six new species from Japan and North America, and notes on their previous misidentification. Canadian Entomologist, 123, 875–927.

    Google Scholar 

  • Lorenzon, M., Pozzebon, A., & Duso, C. (2012). Effects of potential food sources on biological and demographic parameters of the predatory mites Kampimodromus aberrans, Typhlodromus pyri and Amblyseius andersoni. Experimental & Applied Acarology, 58, 259–278. doi:10.1007/s10493-012-9580-7.

    Google Scholar 

  • Loughner, R., Wentworth, K., Loeb, G., & Nyrop, J. (2009). Leaf trichomes influence predatory mite densities through dispersal behaviour. Entomologia Experimentalis et Applicata, 134, 78–88. doi:10.1111/j.1570-7458.2009.00939.x.

    Google Scholar 

  • Lundström, A. N. (1887). Planzenbiologische Studien. II. Die Anpassungen der Planzen an Thiere. Nova acta Regiae Societatis scientarum upsaliensis, 13(3), 1–87.

    Google Scholar 

  • MacRae, I. V., & Croft, B. A. (1996). Differential impact of egg predation by Zetzellia mali (Acari: Stigmaeidae) on Metaseiulus occidentalis and Typhlodromus pyri (Acari: Phytoseiidae). Experimental & Applied Acarology, 20, 143–154.

    Google Scholar 

  • Manson, D. C. M., & Gerson, U. (1996). Web spinning, wax secretion and liquid secretion by eriophyoid mites. In E. E. Lindquist, M. W. Sabelis, & J. Bruin (Eds.), Eriophyoid mites: Their biology, natural enemies and control (6th ed., pp. 199–216). Amsterdam: Elsevier.

    Google Scholar 

  • Marlin, D., Hill, M. P., Ripley, B. S., Strauss, A. J., & Byrne, M. J. (2013). The effect of herbivory by the mite Orthogalumna terebrantis on the growth and photosynthetic performance of water hyacinth (Eichhornia crassipes). Aquatic Botany, 104, 60–69. doi:10.1016/j.aquabot.2012.09.005.

    CAS  Google Scholar 

  • Matthewman, W. G., & Pielou, D. P. (1971). Arthropods inhabiting the sporophores of Fomes fomentarius (Polyporaceae) in Gatineau Park, Quebec. Canadian Entomologist, 103, 775–847.

    Google Scholar 

  • McClure, M. S. (1995). Diapterobates humeralis (Oribatida: Ceratozetidae): An effective control agent of hemlock woolly adelgid (Homoptera: Adelgidae) in Japan. Environmental Entomology, 24, 1207–1215.

    Google Scholar 

  • McGraw, J. R., & Farrier, M. H. (1969). Mites of the superfamily Parasitoidea (Acarina: Mesostigmata) associated with Dendroctonus and Ips (Coleoptera: Scolytidae). Technical Bulletin, North Carolina Agricultural Experiment Station, 192, 1–162.

    Google Scholar 

  • McMurtry, J. A., & Croft, B. A. (1997). Life-styles of phytoseiid mites and their roles in biological control. Annual Review of Entomology, 42, 291–321.

    PubMed  CAS  Google Scholar 

  • Meng, R.-X., Sabelis, M. W., & Janssen, A. (2012). Limited predator-induced dispersal in whiteflies. PLoS One, 7(9), e45487. doi:10.1371/journal.pone.0045487.

    PubMed  CAS  Google Scholar 

  • Meyer, M. K. P. S. (1979). The Tenuipalpidae (Acari) of Africa with keys to the world fauna. Entomology Memoir Department of Agriculture Technical Services Republic of South Africa, 50, 1–135.

    Google Scholar 

  • Meyer, M. K. P. S., & Ueckermann, E. A. (1997). A review of some species of the families Allochaetophoridae, Linotetranidae and Tuckerellidae (Acari: Tetranychoidea). International Journal of Acarology, 23, 67–92.

    Google Scholar 

  • Momen, F. M. (1987). The mite fauna of an unsprayed apple orchard in Ireland. Zeitschrift fuer Angewandte Zoologie, 74, 417–434.

    Google Scholar 

  • Momen, F. M. (2012). Influence of life diet on the biology and demographic parameters of Agistemus olivi Romeih, a specific predator of eriophyid pest mites (Acari: Stigmaeidae and Eriophyidae). Tropical Life Sciences, 23, 25–34.

    Google Scholar 

  • Monks, A., O’Connell, D. M., Lee, W. G., Bannister, J. M., & Dickson, K. J. M. (2009). Benefits associated with the domatia mediated tritrophic mutualism in the shrub Coprosma lucida. Oikos, 116, 873–881.

    Google Scholar 

  • Moraza, M. L., & Lindquist, E. E. (2011). A new genus of fungus-inhabiting blattisociid mites (Acari: Mesostigmata: Phytoseioidea) from Middle America, with a key to genera and subgenera of the subfamily Blattisociinae. Zootaxa, 2759, 1–25.

    Google Scholar 

  • Moser, J. C. (1985). Use of sporothecae by phoretic Tarsonemus mites to transport ascospores of coniferous bluestain fungi. Transactions of the Brisish Mycological Society, 84, 750–753.

    Google Scholar 

  • Moser, J. C., & Roton, L. M. (1971). Mites associated with southern pine beetle in Allen Parish, Louisiana. Canadian Entomologist, 103, 1775–1798.

    Google Scholar 

  • Moser, J. C., Perry, T. J., & Solheim, H. (1989). Ascospores hyperphoretic on mites associated with Ips typographus. Mycological Research, 93, 513–517.

    Google Scholar 

  • Moser, J. C., Konrad, H., Blomquist, S. R., & Kirisits, T. (2010). Do mites phoretic on elm bark beetles contribute to the transmission of Dutch elm disease? Naturwissenschaften, 97, 219–227. doi:10.1007/s00114-009-0630-x.

    PubMed  CAS  Google Scholar 

  • Mound, L. A. (1993). The first thrips species (Insecta) inhabiting leaf domatia: Domatiathrips cunninghamii gen. et sp. nov. (Thysanoptera: Phlaeothripidae). Journal of the New York Entomological Society, 101, 424–430.

    Google Scholar 

  • Murphy, P. W., & Balla, A. N. (1971). The bionomics of Humerobates rostrolamellatus Grandjean (Cryptostigmata: Ceratozetidae) on fruit trees. In M. Daniel & B. Rosick (Eds.), Proceedings of the 3rd International Congress of Acarology (pp. 97–104). The Hague: Junk B.V. Publishers.

    Google Scholar 

  • Nadkarni, N. M., & Longino, J. T. (1990). Invertebrates in canopy and ground organic matter in a neotropical montane forest, Costa Rica. Biotropica, 22, 286–289.

    Google Scholar 

  • Naeem, S., Dobkin, D., & OConnor, B. M. (1985). Lasioseius mites (Acari: Gamasida: Ascidae) associated with hummingbird-pollinated flowers in Trinidad, West Indies. International Journal of Entomology, 27, 338–353.

    Google Scholar 

  • Nanelli, R., & Turchetti, T. (1993). Interazioni acari corticoli – Cryphonectria parasitica: Probabile ruolo delgi acari nella diffusione degli isolati del parassita (pp. 157–163) in Covassi, M. (Coord.) M.A. F. Convegno Piante Forestali, Firenze 1992, 1st. Sper. Pat. Veg., Roma.

    Google Scholar 

  • Naskrecki, P., & Colwell, R. K. (1995). New genus and two new species of Melicharini from Venezuela (Acari: Mesostigmata, Ascidae). Annals of the Entomological Society of America, 88, 284–293.

    Google Scholar 

  • Naskrecki, P., & Colwell, R. K. (1998). Systematics and host plant affiliations of hummingbird flower mites of the genera Tropicoseius Baker and Yunker and Rhinoseius Baker and Yunker (Acari: Mesostigmata: Ascidae) (Thomas Say Foundation Monographs). Lanham: Entomological Society of America. ISBN 0-938522-67-1.

    Google Scholar 

  • Navajas, M. (1998). Host plant associations in the spider mite Tetranychus urticae (Acari: Tetranychidae): Insights from molecular phylogeography. Experimental and Applied Acarology, 22, 201–204.

    Google Scholar 

  • Nicolai, V. (1986). The bark of trees: Thermal properties, microclimate and fauna. Oecologia, 69, 148–160.

    Google Scholar 

  • Nicolai, V. (1989). Thermal properties and fauna on the bark of trees in two different African ecosystems. Oecologia, 80, 421–430.

    Google Scholar 

  • Nicolai, V. (1993). The arthropod fauna on the bark of deciduous and coniferous trees in a mixed forest of the Itasca State Park, MN, USA. Spixiana, 16, 61–69.

    Google Scholar 

  • Nishida, S., Naiki, A., & Nishida, T. (2005). Morphological variation in leaf domatia enables coexistence of antagonistic mites in Cinnamomum camphora. Canadian Journal of Botany, 83(1), 93–101.

    Google Scholar 

  • Norton, R. A., & Palacios-Vargas, J. G. (1982). Nueva Belba (Oribatei: Damaeidae) de musgos epifitos de Mexico. Folia Entomologica Mexicana, 52, 61–73.

    Google Scholar 

  • Norton, A. P., English-Loeb, G., Gadoury, D., & Seem, R. C. (2000). Mycophagous mites and foliar pathogens: Leaf domatia mediate tritrophic interactions in grapes. Ecology, 81, 490–499.

    Google Scholar 

  • Nucifora, A., & Vacante, V. (1986). Laboratory observations on the biology of Tarsonemus waitei banks. In R. Cavalloro & E. Di Martin (Eds.), Integrated pest control in citrus-groves, Acireale 26–29 Mar 1985 (pp. 202–207). Rotterdam: A.A. Balkema.

    Google Scholar 

  • Nuzzaci, G., & Alberti, G. (1996). Internal anatomy and physiology. In E. E. Lindquist, M. W. Sabelis, & J. Bruin (Eds.), Eriophyoid mites: Their biology, natural enemies and control (6th ed., pp. 101–167). Amsterdam: Elsevier.

    Google Scholar 

  • Ochoa, R. (1989). A note on paedogenesis in Tetranychoidea. International Journal of Acarology, 2, 117–118.

    Google Scholar 

  • Ochoa, R., Aguilar, H., & Vargas, C. (1994). Phytophagous mites of Central America: An illustrated guide. Turrialba: CATIE.

    Google Scholar 

  • O’Connell, T., & Bolger, T. (1997). Stability, ephemerality and dispersal ability: Microarthropod assemblages on fungal sporophores. Biological Journal of the Linnean Society, 62, 111–131.

    Google Scholar 

  • OConnor, B. M. (1984). Acarine–fungal relationships: The evolution of symbiotic associations. In Q. Wheeler & M. Blackwell (Eds.), Fungus–insect relationships: Perspectives in ecology and evolution (pp. 354–381). New York: Columbia University Press.

    Google Scholar 

  • OConnor, B. M., Colwell, R. K., & Naeem, S. (1991). Flower mites of Trinidad II. The genus Proctolaelaps (Acari: Ascidae). Great Basin Naturalist, 51, 348–376.

    Google Scholar 

  • OConnor, B. M., Colwell, R. K., & Naeem, S. (1997). The flower mites of Trinidad III. The genus Rhinoseius (Acari: Ascidae). Miscellaneous Publications Museum of Zoology University of Michigan, 184, 1–32.

    Google Scholar 

  • O’Dowd, D. J., & Pemberton, R. W. (1994). Leaf domatia in Korean plants: Floristics, frequency, and biogeography. Vegetatio, 114, 137–149.

    Google Scholar 

  • O’Dowd, D. J., & Willson, M. F. (1989). Leaf domatia and mites on Australian plants: Ecological and evolutionary implications. Biological Journal of the Linnean Society, 37, 191–236.

    Google Scholar 

  • O’Dowd, D. J., Brew, C. R., Christophel, D. C., & Norton, R. A. (1991). Mite–plant associations from the Eocene of southern Australia. Science, 252, 99–101.

    PubMed  Google Scholar 

  • Ohmer, C., Fain, A., & Schuchmann, K.-L. (1991). New ascid mites of the genera Rhinoseius Baker and Yunker, 1964, and Lasioseius Berlese, 1923 (Acari: Gamasida: Ascidae) associated with hummingbirds or hummingbird-pollinated flowers in southwestern Columbia. Journal of Natural History, 25, 481–497.

    Google Scholar 

  • Oldfield, G. N. (1996). Diversity and host plant specificity. In E. E. Lindquist, M. W. Sabelis, & J. Bruin (Eds.), Eriophyoid mites: Their biology, natural enemies and control (6th ed., pp. 199–216). Amsterdam: Elsevier.

    Google Scholar 

  • Oldfield, G. N., & Proesler, G. (1996). Eriophyoid mites as vectors of plant pathogens. In E. E. Lindquist, M. W. Sabelis, & J. Bruin (Eds.), Eriophyoid mites: Their biology, natural enemies and control (6th ed., pp. 259–275). Amsterdam: Elsevier.

    Google Scholar 

  • Overmeer, W. P. J., Nelis, H. J. C. F., De Leenheer, A. P., Calis, J. N. M., & Veerman, A. (1989). Effect of diet on the photoperiodic induction of diapause in three species of predatory mite Amblyseius potentillae, Amblyseius cucumeris and Typhlodromus pyri. Experimental & Applied Acarology, 7, 281–288.

    Google Scholar 

  • Paciorek, C. J., Moyer, B. R., Levin, R. A., & Halpern, S. L. (1995). Pollen consumption by the hummingbird flower mite Proctolaelaps kirmsei and possible fitness effects on Hamelia patens. Biotropica, 27, 258–262.

    Google Scholar 

  • Palevsky, E., Gerson, U., & Zhang, Z.-Q. (2013). Can exotic phytoseiids be considered ‘benevolent invaders’ in perennial cropping systems? Experimental & Applied Acarology, 59, 11–26.

    Google Scholar 

  • Pallini, A., Janssen, A., & Sabelis, M. W. (1999). Spider mites avoid plants with predators. Experimental & Applied Acarology, 23, 803–815.

    Google Scholar 

  • Paoletti, M. G., Stinner, B. R., Stinner, D., Benzig, D., & Taylor, R. (1991). Diversity of soil fauna in the canopy and forest floor of a Venezuelan cloud forest. Journal of Tropical Ecology, 7, 373–383.

    Google Scholar 

  • Parsons, W. T., & Cuthbertson, E. G. (1992). Noxious weeds of Australia. Melbourne: Inkata Press.

    Google Scholar 

  • Patankar, R., Beaulieu, F., Smith, S. M., & Thomas, S. C. (2012). The life history of a gall-inducing mite: Summer phenology, predation and influence of gall morphology in a sugar maple canopy. Agricultural and Forest Entomology, 14, 251–259.

    Google Scholar 

  • Pielou, D. P., & Verma, A. N. (1968). The arthropod fauna associated with the birch bracket fungus, Polyporus betulinus, in eastern Canada. Canadian Entomologist, 100, 1179–1199.

    Google Scholar 

  • Popov, N. A., & Khudyakova, O. A. (1989). Development of Phytoseiulus persimilis (Acarina: Phytoseiidae) fed on Tetranychus urticae (Acarina: Tetranychidae) on various food plants. Acta Entomologica Fennica, 53, 43–46.

    Google Scholar 

  • Porres, M. A., McMurtry, J. A., & March, R. B. (1975). Investigations of leaf sap feeding by three species of phytoseiid mites by labelling with radioactive phosphoric acid. Annals of the Entomological Society of America, 68, 871–872.

    Google Scholar 

  • Presnail, J. K., Hoy, M. A., & Jeyaprakash, A. (1998). Developing transgenic phytoseiids for biological control programs, in Acarology IX: Volume 2, Symposia. Columbus: Ohio Biological Survey.

    Google Scholar 

  • Price, P. W., Bouton, C. E., Gross, P., McPheron, B. A., Thompson, J. N., & Weis, A. E. (1980). Interactions among three trophic levels: Influence of plants on the interactions between insect herbivores and natural enemies. Annual Review of Ecology and Systematics, 11, 41–65.

    Google Scholar 

  • Proctor, H. C., Montgomery, K. M., Rosen, K. E., et al. (2002). Are tree trunks habitats or highways? A comparison of oribatid mite assemblages from hoop-pine bark and litter. Australian Journal of Entomology, 4, 294–299. doi:10.1046/j.1440-6055.2002.00309.x.

    Google Scholar 

  • Qin, T.-K. (1994). Revision of Australian Penthalodidae (Acarina). Invertebrate Taxonomy, 8, 1305–1323.

    Google Scholar 

  • Qin, T.-K., & Halliday, R. B. (1997). Eriorhynchidae, a new family of Prostigmata (Acarina), with a cladistic analysis of eupodoid species of Australia and New Zealand. Systematic Entomology, 22, 151–171.

    Google Scholar 

  • Quiros-Gonzalez, M. J., & Baker, E. W. (1984). Idiosomal and leg chaetotaxy in the Tuckerellidae Baker & Pritchard: Ontogeny and nomenclature. In D. A. Griffiths & C. E. Bowman (Eds.), Acarology VI (1st ed., pp. 166–173). Chichester: Ellis Horwood.

    Google Scholar 

  • Rasmy, A. H., & Saber, S. A. (2012). Effect of cannibalism on predation, oviposition and longevity of the predacious mite, Agistemus exsertus Gonzalez (Acari: Stigmaeidae). Archives of Phytopathology and Plant Protection, 45, 977–985. doi:10.1080/03235408.2012.655147.

    Google Scholar 

  • Richards, L. A., & Coley, P. D. (2012). Domatia morphology and mite occupancy of Psychotria horizontalis (Rubiaceae) across the Isthmus of Panama. Arthropod-Plant Interactions, 6, 129–136. doi:10.1007/s11829-011-9161-4.

    Google Scholar 

  • Ridsdill-Smith, T. J. (1997). Biology and control of Halotydeus destructor (Tucker) (Acarina: Penthaleidae): A review. Experimental & Applied Acarology, 21, 195–224.

    Google Scholar 

  • Ridsdill-Smith, T. J. (2008). Mass rearing an earth mite to screen plants for resistance: A review. Entomological Reviews, 38, S22–S27.

    Google Scholar 

  • Ridsdill-Smith, T. J., Craig, S., & Beaton, C. D. (1996). Microsopic examination of feeding damage to subterranean clover cotyledons caused by Halotydeus destructor (Tucker) (Penthaleidae). In R. Mitchell, D. J. Horn, G. R. Needham, & W. C. Welbourn (Eds.), Acarology IX: Volume 1, proceedings (pp. 55–57). Columbus: Ohio Biological Survey.

    Google Scholar 

  • Robertson, N. L., & Carroll, T. W. (1988). Virus-like particles and spider mite intimately associated with a new disease of barley. Science, 240, 1188–1190.

    PubMed  CAS  Google Scholar 

  • Rock, G. C., Monroe, R. J., & Yergan, D. R. (1976). Demonstration of a sex pheromone in the predaceous mite Neoseiulus fallacis. Environmental Entomology, 5, 264–266.

    Google Scholar 

  • Roda, A., Nyrop, J., Dicke, M., & English-Loeb, G. (2001). Trichomes and spider-mite webbing protect predatory mite eggs from intraguild predation. Oecologia, 125, 428–435.

    Google Scholar 

  • Romero, G. Q., & Benson, W. W. (2004). Leaf domatia mediate mutualism between mites and a tropical tree. Oecologia, 140, 609–616. doi:10.1007/s00442-004-1626-z.

    PubMed  Google Scholar 

  • Romero, G. Q., & Benson, W. W. (2005). Biotic interactions of mites, plants and leaf domatia. Current Opinion in Plant Biology, 8, 436–440.

    PubMed  CAS  Google Scholar 

  • Romero, G. Q., Daud, R. D., Salomão, A. T., Martins, L. F., Feres, R. J. F., & Benson, W. W. (2011). Mites and leaf domatia: No evidence of mutualism in Coffea arabica plants. Biota Neotropica, 11(1), 27–34. http://dx.doi.org/10.1590/S1676-06032011000100002

    Google Scholar 

  • Rosenthal, S. S. (1996). Aceria, Epitrimerus and Aculus species and biological control of weeds. In E. E. Lindquist, M. W. Sabelis, & J. Bruin (Eds.), Eriophyid mites: Their biology, natural enemies and control (6th ed., pp. 729–739). Amsterdam: Elsevier.

    Google Scholar 

  • Rosenstiel, T. N., Shortlidge, E. E., Melnychenko, A. N., Pankow, J. F., & Eppley, S. M. (2012). Sex-specific volatile compounds influence microarthropod-mediated fertilization of moss. Nature, 489, 431–433. doi:10.1038/nature11330.

    PubMed  CAS  Google Scholar 

  • Rowles, A. D., & O’Dowd, D. J. (2009). Leaf domatia and protection of a predatory mite Typhlodromus doreenae Schicha (Acari: Phytoseiidae) from drying humidity. Australian Journal of Entomology, 48, 276–281. doi:10.1111/j.1440-6055.2009.00716.

    Google Scholar 

  • Rozario, S. (1994). Domatia and mites: Effects of leaf morphology on beneficial mites in semi-natural and managed systems. Ph.D thesis, Monash University, Melbourne, p. 179.

    Google Scholar 

  • Ryke, P. A. J. (1964). Acarina associated with Protea flowers in the cape Province. Journal of the Entomological Society of South Africa, 26, 337–354.

    Google Scholar 

  • Sabelis, M. W., & Bakker, F. M. (1992). How predatory mites cope with the web of their tetranychid prey: A functional view on dorsal chaetotaxy in the Phytoseiidae. Experimental & Applied Acarology, 16, 203–225.

    Google Scholar 

  • Sabelis, M. W., & Janssen, A. (1994). Evolution of life history patterns in the Phytoseiidae. In M. A. Houck (Ed.), Mites, ecological and evolutionary analyses of life-history patterns (pp. 70–98). New York: Chapman & Hall.

    Google Scholar 

  • Sabelis, M. W., Janssen, A., Lesna, I., Aratchige, N. S., Nomikou, M., & van Rijn, P. C. J. (2008). Developments in the use of predatory mites for biological pest control. In Enkegaard A (Ed) Bulletin OILB/SROP (Vol. 32, pp. 187–199). International Organization for Biological and Integrated Control of Noxious Animals and Plants, West Palearctic Regional Section (IOBC/WPRS): Daarmstadt.

    Google Scholar 

  • Saito, Y. (1983). The concept of ‘life types’ in Tetranychidae – An attempt to classify the spinning behaviour of Tetranychidae. Acarologia, 24, 377–391.

    Google Scholar 

  • Saito, Y. (1985). Life types of spider mites. In W. Helle & M. W. Sabelis (Eds.), Spider mites: Their biology, natural enemies and control (1ath ed., pp. 253–264). New York: Elsevier.

    Google Scholar 

  • Saito, Y. (1986a). Prey kills predator: Counter-attack success of a spider mite against its specific phytoseiid predator. Experimental & Applied Acarology, 2, 47–62.

    Google Scholar 

  • Saito, Y. (1986b). Biparental defence in a spider mite (Acari: Tetranychidae) infesting Sasa bamboo. Behavioural Ecology and Sociobiology, 18, 377–386.

    Google Scholar 

  • Saito, Y. (2010). Plant mite and sociality – Diversity and evolution (p. 187). Tokyo: Springer.

    Google Scholar 

  • Saito, Y., Chittenden, A. R., & Kanazawa, M. (2011). Counterattack success of a social spider mite against two predominant phytoseiid predator species. Experimental & Applied Acarology, 55, 249–258.

    Google Scholar 

  • Sánchez-Núñez, D. A., & Mancera-Pineda, J. E. (2012). Pollination and fruit set in the main neotropical mangrove species from the Southwestern Caribbean. Aquatic Botany, 103, 60–65.

    Google Scholar 

  • Santos, M. A. (1991). Searching behaviour and associational response by Zetzellia mali (Acarina: Stigmaeidae). Experimental & Applied Acarology, 11, 81–87.

    Google Scholar 

  • Sarmento, R. A., Lemos, F., Bleeker, P. M., Schuurink, R. C., Pallini, A., Oliveira, M. G. A., Lima, E. R., Merjin, K., Sabelis, M. W., & Janssen, A. (2011). A herbivore that manipulates plant defence. Ecology Letters, 14, 229–236. doi:10.1111/j.1461-0248.2010.01575.x.

    PubMed  Google Scholar 

  • Schmidt, A. R., Jancke, S., Lindquist, E. E., Ragazzi, E., Roghi, G., Nascimbene, P. C., Schmidt, K., Wappler, T., & Grimaldi, D. A. (2012). Arthropods in amber from the Triassic period. PNAS 109: 14796–14801. www.pnas.org/cgi/doi/10.1073/pnas.1208464109

  • Scoble, J., & Clarke, M. F. (2006). Nectar availability and flower choice by eastern spinebills foraging on mountain correa. Animal Behaviour, 72, 1387–1394. doi:10.1016/j.anbehav.2006.03.024.

    Google Scholar 

  • Seelmann, L., Auer, A., Hoffmann, D., & Schausberger, P. (2007). Leaf pubescence mediates intraguild predation between predatory mites. Oikos, 116, 807–817.

    Google Scholar 

  • Seeman, O. D. (1996). Flower mites and phoresy: The biology of Hattena panopla Domrow and Hattena cometis Domrow. Australian Journal of Zoology, 44, 193–203.

    Google Scholar 

  • Seeman, O. D., & Walter, D. E. (1995). Life history of Afrocypholaelaps africana (Evans) (Parasitiformes: Ameroseiidae), a mite inhabiting mangrove flowers and phoretic on honeybees. Journal of the Australian Entomological Society, 34, 45–50.

    Google Scholar 

  • Selden, P. A. (1993). Arthropoda (Aglaspidida, Pycnogonida and Chelicerata). In M. J. Benton (Ed.), The fossil record (2nd ed., pp. 297–320). New York: Chapman & Hall.

    Google Scholar 

  • Shimoda, T., Kishimoto, H., Takabayashi, J., Amano, H., & Dicke, M. (2009). Comparison of thread-cutting behavior in three specialist predatory mites to cope with complex webs of Tetranychus spider mites. Experimental & Applied Acarology, 47, 111–120. doi:10.1007/s10493-008-9205-3.

    Google Scholar 

  • Skoracka, A., & Dabert, M. (2009). The cereal rust mite Abacarus hystrix (Acari: Eriophyoidea) is a complex of species: Evidence from mitochondrial and nuclear DNA sequences. Bulletin of Entomological Research, 100(3), 263–272. doi:10.1017/S0007485309990216.

    PubMed  Google Scholar 

  • Skoracka, A., Oldfield, G., Smith, L., Cristofaro, M., Ochoa, R., & Amrine, J. W., Jr. (2010). Host plant specificity and specialization in eriophyoid mites. Experimental & Applied Acarology, 51, 93–113.

    Google Scholar 

  • Smith, L., de Lillo, E., & Amrine, J. W., Jr. (2010). Effectiveness of eriophyid mites for biological control of weedy plants and challenges for future research. Experimental & Applied Acarology, 51, 115–149.

    CAS  Google Scholar 

  • Sobhian, R., & Andres, L. A. (1978). The response of the skeletonweed gall midge, Cystiphora schmidti (Diptera: Cecidomyiidae), and gall mite, Aceria chondrillae (Eriophyidae) to North American strains of rush skeletonweed (Chondrilla juncea). Environmental Entomology, 7, 506–508.

    Google Scholar 

  • Sorensen, J. T., Kinn, D. N., Doutt, R. L., & Cates, J. R. (1976). Biology of the mite Anystis agilis (Acari: Anystidae), a California vineyard predator. Annals of the Entomological Society of America, 65, 905–910.

    Google Scholar 

  • Strodl, M. A., & Schausberger, P. (2012). Social familiarity modulates group living and foraging behaviour of juvenile predatory mites. Naturwissenschaften, 99, 303–311. doi:10.1007/s00114-012-0903-7.

    PubMed  CAS  Google Scholar 

  • Stubbs, C. S. (1995). Dispersal of soredia by the oribatid mite, Humerobates arborea. Mycologia, 87, 454–458.

    Google Scholar 

  • Suski, Z. W. (1967). Tarsonemid mites on apple trees in Poland. IX. Tarsonemus pauperoseatus n.sp. (Acarina: Heterostigmata). Bulletin de l’Académie polonaise des sciences. Série des sciences biologiques, 15, 267–272.

    PubMed  CAS  Google Scholar 

  • Suski, Z. W. (1972a). Tarsonemid mites on apple trees in Poland. X. Laboratory studies on the biology of certain mite species in the family Tarsonemidae (Acarina, Heterostigmata). Zeszyty Problemowe Postępów Nauk Rolniczych, 129, 111–137.

    Google Scholar 

  • Suski, Z. W. (1972b). Tarsonemid mites on apple trees in Poland. XI. Field observations on the distribution and significance of Tarsonemidae (Acarina, Heterostigmata) in apple orchards. Zeszyty Problemowe Postępów Nauk Rolniczych, 129, 139–157.

    Google Scholar 

  • Takabayashi, J., & Dicke, M. (1996). Plant–carnivore mutualism through herbivore-induced carnivore attractants. Trends in Plant Science, 1, 109–113.

    Google Scholar 

  • Tashiro, H. (1987). Turfgrass insects of the United States and Canada. Ithaca: Cornell University Press.

    Google Scholar 

  • Treat, A. E. (1975). Mites of moths and butterflies. Ithaca: Cornell University Press.

    Google Scholar 

  • Tschapka, M., & Cunningham, S. A. (2004). Flower mites of Calyptrogyne ghiesbreghtiana (Arecaceae): Evidence for dispersal using pollinating bats. Biotropica, 36, 377–381.

    Google Scholar 

  • Van, W. P., Zon, A. Q., Overmeer, J., & Veerman, A. (1981). Carotenoids function in photoperiodic induction of diapause in a predacious mite. Science, 213, 1131–1133.

    Google Scholar 

  • Veerman, A. (1992). Diapause in phytoseiid mites: A review. Experimental & Applied Acarology, 14, 1–60.

    Google Scholar 

  • Velazquez, T., & Ornelas, J. F. (2010). Pollen consumption by flower mites in three hummingbird-pollinated plant species. Experimental & Applied Acarology, 50, 97–105. doi:10.1007/s10493-009-9309-4.

    Google Scholar 

  • Vet, L. E. M., & Dicke, M. (1992). Ecology of infochemical use by natural enemies in a tritrophic context. Annual Review of Entomology, 37, 141–172.

    Google Scholar 

  • Walter, D. E. (1992). Leaf surface structure and the distribution of Phytoseius mites (Acarina: Phytoseiidae) in south-east Australian forests. Australian Journal of Zoology, 40, 593–603.

    Google Scholar 

  • Walter, D. E. (1996). Living on leaves: Mites, tomenta, and leaf domatia. Annual Review of Entomology, 41, 101–114.

    PubMed  CAS  Google Scholar 

  • Walter, D. E. (1998). Hoploseius australianus, sp. nov. (Acari: Mesostigmata: Ascidae), a unique element in the Australian acarofauna. The Australian Entomologist, 25, 69–74.

    Google Scholar 

  • Walter, D. E. (2004). Hidden in plain sight: Mites in the canopy. In M. D. Lowman & H. B. Rinker (Eds.), Forest canopies (2nd ed., pp. 224–241). Amsterdam: Elsevier Academic Press.

    Google Scholar 

  • Walter, D. E., & Beard, J. J. (1997). A review of the Australian Phytoseiinae (Acari: Mesostigmata: Phytoseiidae). Invertebrate Taxonomy, 11, 823–860.

    Google Scholar 

  • Walter, D. E., & Behan-Pelletier, V. (1993). Systematics and ecology of Adhaesozetes polyphyllos sp. nov. (Acari: Oribatida: Licneremaeoidea), a leaf-inhabiting mite from Australian rainforests. Canadian Journal of Zoology, 71, 1024–1040.

    Google Scholar 

  • Walter, D. E., & Behan-Pelletier, V. (1999). Mites in forest canopies: Filling the size distribution shortfall? Annual Review of Entomology, 44, 1–19.

    PubMed  CAS  Google Scholar 

  • Walter, D. E., & Denmark, H. A. (1991). Use of leaf domatia on wild grape (Vitis munsoniana) by arthropods in central Florida. Florida Entomologist, 74, 440–446.

    Google Scholar 

  • Walter, D. E., & Kaplan, D. T. (1990). Feeding observations on two astigmatic mites, Schwiebea rocketti Woodring (Acaridae) and Histiostoma bakeri Hughes & Jackson, associated with citrus feeder roots. Pedobiologia, 34, 281–286.

    Google Scholar 

  • Walter, D. E., & Lindquist, E. E. (1997). Australian species of Lasioseius (Acari: Mesostigmata: Ascidae): The porulosus group and other species from rainforest canopies. Invertebrate Taxonomy, 11, 525–547.

    Google Scholar 

  • Walter, D. E., & O’Dowd, D. J. (1992a). Leaves with domatia have more mites. Ecology, 73, 1514–1518.

    Google Scholar 

  • Walter, D. E., & O’Dowd, D. J. (1992b). Leaf morphology and predators: Effect of domatia on the distribution of phytoseiid mites (Acari: Phytoseiidae). Environmental Entomology, 21, 478–484.

    Google Scholar 

  • Walter, D. E., & O’Dowd, D. J. (1995a). Beneath biodiversity: Factors influencing the diversity and abundance of canopy mites. Selbyana, 16, 12–20.

    Google Scholar 

  • Walter, D. E., & O’Dowd, D. J. (1995b). Life on the forest phylloplane: Hairs, little houses, and myriad mites. In M. D. Lowman & N. M. Nadkarni (Eds.), Forest canopies (pp. 325–351). Sydney: Academic Press.

    Google Scholar 

  • Walter, D. E., & Proctor, H. C. (1998). Predatory mites in tropical Australia: Local species richness and complementarity. Biotropica, 30, 72–81.

    Google Scholar 

  • Walter, D. E., & Proctor, H. C. (1999). Mites: Ecology, evolution and behaviour (p. 322). Wallingford: University of NSW Press, Sydney and CABI. ISBN 0 86840 529 9.

    Google Scholar 

  • Walter, D. E., Hudgens, R. A., & Freckman, D. W. (1986). Consumption of nematodes by fungivorous mites Tyrophagus spp. (Acarina: Astigmata: Acaridae). Oecologia, 70, 357–361.

    Google Scholar 

  • Walter, D. E., Halliday, R. B., & Lindquist, E. E. (1993). A review of the genus Asca (Acarina: Ascidae) in Australia, with the description of three new leaf-inhabiting species. Invertebrate Taxonomy, 7, 1327–1347.

    Google Scholar 

  • Walter, D. E., O’Dowd, D. J., & Barnes, V. (1994). The forgotten arthropods: Foliar mites in the forest canopy. Memoirs of the Queensland Museum, 36, 221–226.

    Google Scholar 

  • Walter, D. E., Seeman, O., Rodgers, D., & Kitching, R. L. (1998). Mites in the mist: How unique is a rainforest canopy knockdown fauna? Australian Journal of Ecology, 23, 501–508.

    Google Scholar 

  • Walter, D. E., Lindquist, E. E., Smith, I. M., Cook, D. R., & Krantz, G. M. (2009). Order Trombidiformes. In G. W. Krantz & D. E. Walter (Eds.), A manual of acarology (3rd ed., pp. 233–420). Lubbock: Texas Tech University Press.

    Google Scholar 

  • Walzer, A., & Schausberger, P. (2010). Threat-sensitive anti-intraguild predation behaviour: Maternal strategies to reduce offspring predation risk in mites. Animal Behaviour, 81, 177–184.

    Google Scholar 

  • Weber, M. G., Clement, W. L., Donoghue, M. J., & Agrawal, A. A. (2012). Phylogenetic and experimental tests of interactions among mutualistic plant defense traits in Viburnum (Adoxaceae). American Naturalist, 180, 450–463.

    PubMed  Google Scholar 

  • Weeks, A. R., Fripp, Y. J., & Hoffmann, A. A. (1995). Genetic structure of Halotydeus destructor and Penthaleus major populations in Victoria (Acari: Penthaleidae). Experimental & Applied Acarology, 19, 633–646.

    Google Scholar 

  • Westphall, E., & Manson, D. C. M. (1996). Feeding effects on host plants: Gall formation and other distortions. In E. E. Lindquist, M. W. Sabelis, & J. Bruin (Eds.), Eriophyoid mites: Their biology, natural enemies and control (pp. 251–258). Amsterdam: Elsevier.

    Google Scholar 

  • Wiggers, M. S., Pratt, P. D., Tipping, P. W., Welbourn, C., & Cuda, J. P. (2005). Within-plant distribution and diversity of mites associated with the invasive plant Schinus terebinthifolius (Sapindales: Anacardiaceae) in Florida. Environmental Entomology, 34, 953–962.

    Google Scholar 

  • Willson, M. F. (1991). Foliar mites in the Eastern Deciduous forest. American Midland Naturalist, 126, 111–117.

    Google Scholar 

  • Yano, S., & Osakabe, M. (2009). Do spider mite-infested plants and spider mite trails attract predatory mites? Ecological Research, 24, 1173–1178. doi:10.1007/s11284-009-0598-1.

    Google Scholar 

  • Yoshida, T., & Hijii, N. (2011). Microarthropod colonization of litter in arboreal and soil environments of a Japanese cedar (Cryptomeria japonica) plantation. Journal of Forest Research, 16, 46–54. doi:10.1007/s10310-010-0205-x.

    Google Scholar 

  • Young, M. R., Behan-Pelletier, V. M., & Hebert, P. D. N. (2012). Revealing the hyperdiverse mite fauna of Subarctic Canada through DNA barcoding. PLoS One, 7, e48755. doi:10.1371/journal.pone.0048755.

    PubMed  CAS  Google Scholar 

  • Zacharda, M., & Krivolutsky, D. A. (1985). Prostigmatic mites (Acarina: Prostigmata) from the Upper Cretaceous and Paleocene amber of the USSR. Vestnik Ceskoslovenske Spolecnosti Zoologicke, 49, 147–152.

    Google Scholar 

  • Zemek, R., & Prenerova, E. (1997). Powdery mildew (Ascomycotina: Erysiphales) – An alternative food for the predatory mite Typhlodromus pyri Scheuten (Acari: Phytoseiidae). Experimental & Applied Acarology, 21, 405–414.

    Google Scholar 

  • Zhang, Z.-Q. (1995). Variance and covariance of ovipositional rates and developmental rates in the Phytoseiidae (Acari: Mesostigmata): A phylogenetic consideration. Experimental & Applied Acarology, 19, 139–146.

    Google Scholar 

  • Zhao, S., & Amrine, J. W., Jr. (1997). Investigation of snowborne mites (Acari) and relevancy to dispersal. International Journal of Acarology, 23, 209–213.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Walter, D.E., Proctor, H.C. (2013). Mites on Plants. In: Mites: Ecology, Evolution & Behaviour. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7164-2_8

Download citation

Publish with us

Policies and ethics