Open access peer-reviewed chapter

Medicinal Plants Used for the Treatment and Management of Bilharziasis and Other Parasitic Infections Affecting Humans in Zimbabwe: A Systematic Review

Written By

Elliot Nyagumbo, Trust Nyirenda, Cephas Mawere, Ian Mutasa, Emmanuel Kademeteme, Alfred M. Mutaramutswa, Donald Kapanga, Godwins Ngorima, Leroy Nhari, Fabian Maunganidze, Michael Bhebhe, William Pote and Lucy Mabaya

Submitted: 05 September 2023 Reviewed: 26 September 2023 Published: 29 December 2023

DOI: 10.5772/intechopen.113291

From the Edited Volume

Medicinal Plants - Chemical, Biochemical, and Pharmacological Approaches

Edited by Mozaniel Santana de Oliveira, Eloisa Helena de Aguiar Andrade, Ravendra Kumar and Suraj N. Mali

Chapter metrics overview

105 Chapter Downloads

View Full Metrics

Abstract

The World Health Organization (WHO) estimated that at least 251.4 million people from 78 countries were in need of preventative care for bilharziasis in 2021. Globally, soil-transmitted helminth infections are present in at least 24% of the world’s population. Tropical and subtropical areas have a wide distribution of infections with a high prevalence in the sub-Saharan Africa. The aim of this study was to document plants that have been traditionally used in Zimbabwe to manage bilharziasis and other parasitic infections. The literature review was based on published papers and abstracts retrieved from the online databases. Books, book chapters, scientific reports and theses from universities in Zimbabwe that were available online were also used in this review. Plants with the reported traditional usage against bilharziasis and other parasitic infections were recorded from the data retrieved. In total, 68 species were used to treat and manage bilharzia and other parasitic infections. Most of these medicinal plants were used to treat and manage schistosomes (fluke or worm). A total of 76.5% of the medicinal plants reported have been scientifically validated and documented to exhibit anthelmintic activity. In conclusion, Zimbabwe has a plethora of medicinal plants that can be used to manage bilharziasis and other parasitic infections.

Keywords

  • ethnobotanical
  • bilharzia
  • schistosomiasis
  • worms
  • pharmacological
  • toxicology
  • traditional plants
  • anthelmintic
  • Zimbabwe

1. Introduction

Schistosomiasis is a neglected parasitic tropical disease caused by blood flukes (trematode worms) of the genus Schistosoma. According to WHO [1] estimates, at least 251.4 million people reported from 78 countries were in need of preventative care for bilharziasis in 2021. Schistosomiasis, a disease caused by Schistosoma mansoni (intestinal) and S. haematobium (urogenital) species, is mainly concentrated in sub-Saharan Africa, where about 90% of the disease burden exists. The transmission of these species occurs through feces and urine, respectively [2]. Endemic areas where the infection is prevalent are inhabited by over 700 million people, particularly in tropical and subtropical regions. Schistosomiasis is more prevalent in impoverished rural communities, particularly in regions where fishing and agricultural activities are prevalent. These areas are often characterized by poor communities lacking access to potable water and adequate sanitation [3]. Morbidity reduction can therefore be accomplished with the use of preventative therapy, which should be repeated over a number of years in endemic areas with moderate to high transmission [4]. According to WHO [5] the most frequent illnesses worldwide are soil-transmitted helminth (STH) infections, which mostly afflict the poorest and most destitute populations. Where sanitation is inadequate, the soil is polluted with egg-infected human feces and fecal waste [5]. The primary causative species that infect humans are whipworms (Trichuris trichiura), hookworms (Ancylostoma duodenale, Necator americanus and Ancylostoma duodenale) and roundworms (Ascaris lumbricoides) [6]. STH infections afflict at least 24% of the world’s population, which exceeds 1.5 billion individuals. Infections are widely distributed in tropical and subtropical locations, with the Americas, China, East Asia and sub-Saharan Africa having the highest frequency [5].

Pharmacotherapy is the most effective approach for decreasing the incidence of schistosomiasis infections. The WHO recommends preventive chemotherapy using praziquantel as the strategy for managing schistosomiasis. School-age children (5 to 15 years old) are the target population for this therapy due to their high infection burden and ability to be effectively targeted through schools [7]. Zimbabwe aims to eradicate bilharzia and intestinal worms, by 2030. During a mass treatment campaign carried out from April 3–9, 2022, over 1.8 million children received free oral treatment for schistosomiasis (bilharzia) and soil-transmitted helminthiases (intestinal worms) [8].

Despite not achieving complete elimination of bilharzia, Zimbabwe has significantly reduced the burden of the disease through the annual national treatment campaigns. In 2014 a study revealed that the district of Chiredzi in Masvingo province had the highest prevalence of S. mansoni at 43.7%, followed by the Hwedza district in Mashonaland East and Nyanga in Manicaland province, with prevalence rates of 32.3 and 31.5%, respectively [9]. Despite the great prevalence of parasitic diseases worldwide and the substantial amount of suffering caused by these parasites, the majority are considered neglected diseases. Only malaria treatment and prevention receive significant financing, but there is an urgent need for more action to be done to alleviate the suffering of the large populations of people who are infected with other parasitic diseases [10]. Similarly, despite those parasitic infections accounting for more than 10% of the world’s disease burden, drug discovery efforts for parasitic diseases are limited, with only 1% of new medications addressing parasitic diseases in the last 40 years [6].

The purpose of the study is to find medicinal plant species that are used as an effective treatment against schistosomiasis in Zimbabwe. The study involved the compilation of a list of medicinal plants used in Zimbabwe to treat parasitic infections in humans. Bilharzia, gastrointestinal worms and helminths, ectoparasites, trichomoniasis, leishmaniasis and trypanosomiasis are among the diseases covered. Due to the broad scope of these topics, veterinary usage and malaria were excluded. This systematic review will create a comprehensive digital database of medicinal plants used in traditional practice which holds the potential to expand treatment options, improve access to healthcare, preserve traditional knowledge and promote sustainable practices in disease management. Moreover, the potential development of drug resistance has sparked an ongoing debate about the future efficacy of praziquantel. The emergence of drug-resistant strains of schistosomes will pose a significant challenge in controlling the disease. Thus, exploring medicinal plants may help to identify novel compounds that can overcome drug resistance and provide alternative treatment options.

Advertisement

2. Objectives

This systematic review was therefore undertaken to:

  1. Determine the medicinal plants traditionally used in Zimbabwe for the management of parasitic infections.

  2. Describe the common names, scientific names, plant family, plant parts used, modes of preparation, traditional uses, distribution and conservation status.

  3. Compile a comprehensive document that describes the ethnobotany of medicinal plants in Zimbabwe that are traditionally used to treat and manage parasitic infections in humans.

  4. Generate integrated and sufficient traditional evidence to support its medicinal use.

  5. Determine the endangered medicinal plant species to prioritize for conservation amidst the growing destruction of natural resources for settlement, industrialization, construction and energy production [11, 12, 13].

2.1 Inclusion criteria

Plants used to treat the following parasitic infectious diseases were included in this study

  1. Bilharzia

  2. Gastrointestinal worms

  3. Helminths

  4. Ectoparasites

  5. Trichomoniasis

  6. Leishmaniasis

  7. Typanosomiasis

2.2 Exclusion criteria

Plants used to treat the following parasitic infectious diseases were excluded from this study

  1. Malaria

  2. Veterinary parasites

Advertisement

3. Materials and methods

3.1 Research protocol and reporting

The Preferred Reporting Items for the Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used in the reporting of this study (Figure 1). The protocol used in this systematic review was as previously reported [14].

Figure 1.

PRISMA flow diagram showing the search and retrieval steps of the study (adopted from Moher et al. [14]).

3.2 Literature search

Electronic data on the ethnobotany of medicinal plants used in Zimbabwe were retrieved from electronic databases such as Google, Google Scholar, Springer Link, Researchgate, PubMed, Science Direct and JSTOR. The keywords set “medicinal plants AND (antiparasitic OR antihelmintic) AND Zimbabwe” were used. The retrieved articles were downloaded and stored in EndNote X9 (Thomson Reuters, San Francisco, CA and USA). Duplicate articles were then removed from the file. Further, a manual search from the reference lists of screened eligible articles and deposited electronic copies of dissertations and theses in online Universities’ repositories and National Herbarium and Botanic Gardens (SRGH) libraries up to 31 December 2020 were done. Other sources utilized in this study included books [15, 16, 17, 18], book chapters, scientific reports and theses available at universities [19, 20] and National Herbarium and Botanic Gardens (SRGH) libraries. The authors continuously received notifications of any new “similar reports” meeting the search criteria from Science Direct, Scopus and Google Scholar.

The plant names were verified with http://www.theplantlist.org and https://www.zimbabweflora.co.zw. Plants with the reported traditional usage against bilharziasis and other parasitic infections were identified and compiled from the information collected and gathered. A master list was prepared including all the medicinal plants used in Zimbabwe for the treatment and management of bilharziasis and other parasitic infections (Table 1). The above-mentioned databases were also searched for pharmacological and toxicological properties providing scientific evidence of medicinal usage comparable to their ethnomedicinal usage. All the information was summarized in three tables (Tables 13) and five figures (Figures 26). The review excluded medicinal plants for veterinary use and those against malaria to limit the plants to those used in the treatment and management of bilharziasis and other parasitic infections in humans.

Scientific name [Family][Growth habit]
Distribution
Vernacular names and other namesParts used and mode of preparationParasitic infection ethnomedicinal uses
[References]
Abrus precatorius L. subsp. africanus Verde.
[Fabaceae]
Woody, deciduous climber.
[Climber]
N, W, C, E, S
Chonjo (Shona) Lucky bean creeper (English) Minimini (Shona) Munhutuwaro (Shona)Roots (fresh)
Leaves and stem
Bilharziasis (Urinary schistosomiasis)
[21, 22, 23]
Acacia karoo Hayne
[Fabaceae]
Small to medium-sized tree.
[Tree]
N, W, C, E, S
Isinga (Ndebele) Mubayamhondoro (Shona) Muhunga (Shona) Muzunga (Shona) Sweet thorn (English)Leaves and roots
Roots decoction
Bilharziasis (Urinary schistosomiasis)
[21, 23, 24]
AIbizia amunesiana Harms
[Fabaceae]
Small to medium-sized tree.
[Tree]
N, W, C, E, S
Muriranyenze (Shona) Purple-leaved albizia (English) Umnonjwana (Ndebele)Roots, bark, leaves and stem.Bilharziasis (Urinary schistosomiasis)
[21, 23]
Asparagus spp except A. asparagoides L
[Asparagaceae]
Perennial herbs or shrubs
[Herb or shrub]
N, W, C, E, S
Roots – mixed with seeds of Vigna unguiculata in soup and taken orally.Bilharziasis
[16]
Burkea africanus Hook.
[Fabaceae]
Deciduous tree, to 8 m.
[Tree]
N, W, C, E, S
Burkea (English) False ash (English) Mukarati (Shona) Umnondo (Ndebele) Wild syringa (English)Bilharziasis (Urinary schistosomiasis)
[21]
Carissa spinarum L.
Carrisa edulis Vahl
[Apocynaceae]
Scrambling shrub or small tree.
[Tree]
N, W, C, E, S
Mudyabveni (Shona) Mudzambara (Shona) Muhlababzunzi (Shona) Mumbingwa (Shona) Muruguru (Shona) Mutsamviringa (Shona) Simple-spined num-num (English) Umlugulu (Ndebele)Bilharziasis (Urinary schistosomiasis)
[21]
Cassia abbreviata Oliv.
[Fabaceae]
Shrub or small rounded tree.
[Tree]
N, W, C, E, S
Isihaqa (Ndebele) Long-tail cassia (English) Muremberembe (Shona) Muvheneka (Shona)Leaves, roots and bark.Bilharziasis (Urinary schistosomiasis)
[21, 23]
Catunaregam swynnertonii (S. Moore) Bridson
Catunaregum spinosa sensu Verdcourt subsp. spinosa
[Rubiaceae]
Spiny, deciduous shrub or small tree growing up to 7 metres.
[Tree or shrub]
E, S
Sand bone-apple (English)LeavesIntestinal worms
[25]
Celtis africana Burm. f.
[Ulmaceae]
Deciduous tree 5–15(−35) m
[Tree] [Cultivated]
Common celtis (English) Kamutuna (Shona) Mugara (Shona) Muguru (Shona) Mukonachando (Shona) Musvutaderere (Shona) Umdlawuthu (Ndebele) White stinkwood (English)Leaves and roots.Bilharziasis (Urinary schistosomiasis)
[21, 23]
Cissampelos mucronata A. Rich.
[Menispermaceae]
Liane with a woody root stock
[Liane]
N, W, C, E, S
Hairy heartleaf (English) Heart-leaved vine (English) Nyakuta (Shona) Ruzambu (Shona)Roots – infusion taken orally three times a day for three consecutive days.Bilharziasis
[16]
Cissus quadrangularis L
[Vitaceae]
Succulent climbing herb with tendrils.
[Climber]
N, W, C, E, S
Murunjurunju (Shona) Muvengahonye (Shona) Renja (Shona)Whole plant – crushed and applied on wounds.To treat wounds infested with maggots
[16]
Clerodendrum ternatum Schinz
[Verbenaceae]
Suffrutex growing from an extensive rhizomatous woody roots stock
[Herb]
N, W, C, E, S
Dwarf cat’s whiskers (English) Umalanjana (Ndebele) Umqotshanja (Ndebele)Roots – are ground into powder and taken orally.Tapeworm and hookworm.
[16]
Combretum hereroense Schinz subsp. heteroense
[Combretaceae]
Shrub or small tree.
[Tree or shrub] N, W, C, E, S
Ithetshane (Ndebele) Mouse-eared combretum (English) Murovamhuru (Shona) Mutechani (Shona) Russet bushwillow (English)Bilharziasis
[26]
Combretum imberbe Wawra
[Combretaceae]
Medium to large deciduous tree.
[Tree]
N, W, C, E, S
Leadwood (English) Monzo (Shona) Muchenarota (Shona) Mutsviri (Shona) Umtshenalotha (Ndebele) Umtshwili (Ndebele)Roots – infusion taken orally.Bilharziasis
[16, 27]
Combretum zeyheri Sond
[Combretaceae]
Small to medium-sized tree.
[Tree] N, W, C, E, S
Large-fruited bushwillow (English) Muchenja (Shona) Mupembere-kono (Shona) Muruka (Shona) Umbhondo (Ndebele) Umbula (Ndebele)Bilharziasis and hookworm
[28]
Crossopteryx febrifuga (Afzel. ex G. Don) Benth
[Rubiaceae]
Shrub or small deciduous tree. [Tree]
N, W, C, E, S
Common crown-berry (English) Crystal-bark (English) Mubakatirwa (Shona) Mugoko (Shona) Mukombegwa (Shona) Mukombigo (Shona) Muteyo (Shona) Umphokophokwana (Ndebele)Bilharziasis (Urinary schistosomiasis)
[21]
Croton gratissimus Burch
[Euphorbiaceae]
Shrub or small tree.
[Tree or shrub] N, W, C, E, S
Gunukira (Shona) Lavender croton (English) Mubangwa (Shona) Mufandemengwe (Shona) Mufarata (Shona)Internal worms and ascariasis
[25]
Cynanchum viminale (L.) L.
subsp. viminale
Sarcostemma viminale (L) R.Br
[Apocynaceae]
Succulent vine.
[Climber]
N, W, C, E, S
Caustic vine (English) Chifure (Shona) Imvubu (Ndebele) Ingotsha (Ndebele) Ingotshayeganga (Ndebele) Milk rope (English) Runyakadomdo (Shona) Rusungwe (Shona)Latex – infusion taken orally.Worm scours
[16]
Dicoma anomala Sond.
[Asteraceae]
Prostrate, decumbent or erect perennial herb
[Herb]
N, W, C, E, S
Fever bush (English)
Stomach bush (English)
Chifumuro (Shona)
Roots (fresh) decoctionBilharziasis (Urinary schistosomiasis)
Intestinal worm parasites
[21, 22, 23, 29]
Diplorhynchus condylocarpon (Müll. Arg.) Pichon
[Apocynaceae]
Shrub or as a small, graceful tree
[Tree or shrub] N, W, C, E, S
Rhodesian rubber tree, Horn-pod tree, Wild rubber (English) Mutowa (Shona)Bilharziasis (Urinary schistosomiasis)
[21]
Elephantorrhiza goetzei (Harms)
[Fabaceae]
[Shrub]
N, W, C, E, S
Intolwane (Ndebele) Mugudzuru (Shona) Narrow-pod elephant roots (English)
Ndorani (Shona)
Roots – is mixed with Bauhinia thonningii and a decoction is prepared which is taken orally. Roots decoction and/or infusion.
Roots (fresh), fruits, stem bark and stem
Bilharziasis (Urinary schistosomiasis)
[16, 21, 23, 30, 31, 32]
Eriosema englerianum Harms.
[Fabaceae]
A many-stemmed perennial, growing from a woody root stock.
[Herb]
N, W, C
Blue bush (English) Mashona fire bean (English)Roots – is mixed with Vigna unguiculata seeds and soup drunk.Bilharziasis
[16]
Erythrina abyssinica Lam. ex DC.
[Fabaceae]
Small to medium-sized tree of wooded grassland.
[Tree]
N, C, E, S
Lucky-bean tree (English) Munhimbiti (Shona) Mutete (Shona) Mutiti (Shona) Mutsiti (Shona) Red-hot-poker tree (English) Umgqogqogqo (Ndebele)Roots – is mixed with Vigna unguiculata seeds and soup drunk.Bilharziasis (Urinary schistosomiasis)
[16, 21]
Euclea divorum Hiern
[Ebenaceae]
Evergreen shrub or small tree.
[Tree or shrub]
N, W, C, E, S
Diamond-leaved euclea (English) Magic guarri (English) Mubhununu (Shona) Mudziviriratsuro (Shona) Mugarazvuru (Shona) Mugurameno (Shona) Munyenya (Shona) Mushangura (Shona) Umtshekesane (Ndebele)Roots – mixed with Vigna unguiculata seeds and cooked in soup.Bilharziasis (Urinary schistosomiasis)
[16, 21]
Euphorbia schinzii Pax
[Euphorbiaceae]
Shrub under 2 m.
[Shrub]
N, W, C, E, S
Bilharziasis (Urinary schistosomiasis)
[21]
Faurea saligna Harv
[Proteaceae]
Small to medium-sized tree.
[Tree]
N, W, C, E, S
Mutsatstsi (Shona) African beech (English) Isidwadwa (Ndebele) Kapfutsana (Shona) Mugarahungwe (Shona) Munyaganza (Shona) Mushangwa (Shona) Muzazati (Shona) Umpembele (Ndebele) Willow beechwood (English)LeavesBilharziasis and helminthiasis.
[33]
Flacourtia indica (Burm.f) Merr
[Salicaceae]
Tree, shrub over 2 m.
[Tree or shrub] N, W, C, E, S
Batoka plum (English) Governor’s plum (English) Mududwe (Shona) Munhunguru (Shona) Mutombototo (Shona) Mutudza (Shona) Mutunguru (Shona)Roots – infusion taken orally.Bilharziasis and intestinal worms
[16, 19, 20]
Gymnosporia senegalensis (Lam.) Loes.
Maytenus senegalensis (Lam) Exell
[Celastraceae]
Tree, shrub over 2 m.
[Tree or shrub] N, W, C, E, S
Chivhunabadza (Shona) Chizhuzhu (Shona) Confetti tree (English) Isihlangu (Ndebele) Mugaranjiva (Shona) Mukokoba (Shona) Musosaguva (Shona) Musosawafa (Shona) Musukameno (Shona) Mutotova (Shona) Mutsotsova (Shona) Red spike-thorn (English)Leaves and stem.
Roots
Roots and bark
Bilharziasis (Urinary schistosomiasis)
[21, 23]
Hydnora abyssinica A. Braun ex Schweinf.
Hydnora solmsiana Dinter
[Hydnoraceae]
A subterranean roots parasite, lacking chlorophyll
[Roots parasite]
W, C
Emerging flower (English)Bilharziasis (Urinary schistosomiasis)
[21]
Khaya anthotheca (Welw.) C. DC.
Khaya nyasica Bak.f.
[Meliaceae]
Large to very large evergreen tree with a long straight stem.
[Tree]
N, E, S
Mubarwa (Shona) Mururu (Shona) Muwawa (Shona) Red mahogany (English)Bilharziasis (Urinary schistosomiasis)
[21]
Kigellia africana (Lam.) Benth.
Kigelia pinnata (Jacq.) DC.
[Bignoniaceae]
Medium to large tree.
[Tree]
N, W, C, E, S
Mubveve (Shona) Musonya (Shona) Muvhumati (Shona) Sausage tree (English) Umvebe (Ndebele)Fruit, bark and roots.Tapeworm
[19]
Landolphia kirkii Dyer ex Hook. f.
[Apocynaceae]
[Climber, liane.]
E
Mukanga (Shona) Muungu (Shona) Rubber vine (English) Runyangarwapene (Shona) Sand apricot-vine (English)Bilharziasis (Urinary schistosomiasis)
[21]
Lannea discolor (Sond.) Engl.
[Anacardiaceae]
Medium-sized deciduous tree.
[Tree]
N, W, C, E, S
Chizhenje (Shona) Live-long (English) Mugan’acha (Shona) Muhumbukumbu (Shona) Mumbumbu (Shona) Mupuri (Shona) Mushamba (Shona) Tree grape (English)Roots – decoction taken orally. Leaves and stem.
Roots and bark.
Bilharziasis (Urinary schistosomiasis)
[21, 23, 34, 35]
Lannea edulis (Sond.) Engl.
[Anacardiaceae]
Shrub under 2 m
[Shrub]
N, W, C, E, S
Intakubomvu (Ndebele) Mutsambatsi (Shona) Tsombori (Shona) Wild grape (English)Roots – infusion or decoction taken orally. Roots can be ground into powder and mixed with porridge and taken orally.
Roots (fresh)
Leaves and stem.
Bilharziasis (Urinary schistosomiasis)
[16, 21, 22, 23, 31, 36]
Lecaniodiscus fraxinifolias Bak.
[Sapindaceae]
Tree, shrub over 2 m.
[Tree or shrub]
N, E, S
Chikuhlule (Hlengwe) Musando (Shona) Mutarara (Tonga: Zimbabwe) River-litchi (English)Leaves and stem.
Roots.
Bilharziasis (Urinary schistosomiasis)
[21, 23]
Loranthus on Dichrostachys cinerea,
[Loranthaceae]
Parasitic shrub with long spreading stems.
[Shrub]
N, W, C, E, S
Sicklebush (English)Whole plant – infusion taken orally.Bilharziasis
[16]
Mondia whitei (Hook.f.) Skeels
[Apocynaceae]
[Climber, liane]
N, W, C, E, S
Mungurauwe (Shona) Tonic roots (English) White’s ginger (English)Roots – ground into powder and mixed in porridge.Bilharziasis
[16]
Mucuna coriacea Baker subsp. irritans (Burtt Davy) Verdc.
[Fabaceae]
Climber, shrub over 2 m.
[Climber or shrub]
N, C, E, S
Buffalo bean (English) Huriri (Shona) Uriri (Shona)Bilharziasis (Urinary schistosomiasis)
[21]
Musa sp.
[Musaceae]
Tall herbs, perennial
[Herb]
Cultivated
Mubhanana (Shona)Bilharziasis (Urinary schistosomiasis)
[21]
Ozoroa reticulata (Baker f.) R. Fern. & A. Fern.
Ozoroa insignis Del. subsp. reticulata (Bak.f.) Gillett
Heeria reticulata Engl.
[Anacardiaceae]
A small, much-branched deciduous tree.
[Tree]
N, W, C, E, S
Isafice (Ndebele) Muacha (Shona) Mubedu (Shona) Mudyamombe (Shona) Mugaragunguwo (Shona) Mulilila (Tonga: Zimbabwe) Murungu (Shona) Raisin bush (English) Tar berry (English)Roots – infusion mixed with porridge and taken orally.
Roots – infusion taken orally.
Roots (fresh)
Leaves
Stem and bark.
Roots bark.
Tapeworm and hookworm.
Bilharziasis (Urinary schistosomiasis)
[16, 21, 22, 23]
Peltophorum africanum Sond.
[Fabaceae]
Tree, shrub over 2 m.
[Tree or shrub]
N, W, C, E, S
African wattle (English) Dzedze (Shona) Mudjiza (Shona) Mupumhamauva (Shona) Musambanyoka (Shona) Mutandarombo (Shona) Muzeze (Shona) Nyakambariro (Shona) Nyamanyoka (Shona) Umkahla (Ndebele) Umsehla (Ndebele) Zeze (Shona)Leaves and stem.
Roots and roots bark.
Roots
Bilharziasis (Urinary schistosomiasis)
Intestinal parasites
[21, 23, 29]
Phaseolus vulgaris L
[Fabaceae]
Herbs or subshrubs, erect, prostrate or climbing.
[Herb or shrub] Cultivated
Common bean (English)
French bean (English)
Seeds – driedBilharziasis (Urinary schistosomiasis)
[21]
Piliostigma thonningii (Schumach.) Milne-Redh.
[Fabaceae]
[Tree]
N, W, C, E, S
Camel-foot (English) Ihabahaba (Ndebele) Monkey bread (English) Mubaba (Shona) Muhuku (Shona) Musakasa (Shona) Musekesa (Shona) Mutukutu (Shona)Roots – are mixed with Elephantorrhiza
goetzei roots and an infusion are prepared which is taken orally.
Leaves and stem.
Roots and roots bark.
Roots
Bilharziasis (Urinary schistosomiasis)
[16, 21, 23, 31]
Pogonarthria squarrosa (Roem. & Schult.) Pilg.
[Poaceae]
Erect perennial tufted grass, up to 1 m.
[Grass]
N, W, C, E, S
Cross grass (English) Herringbone grass (English) Meerjarige denneboomgras (Afrikaans) Sekelgras (Afrikaans)Roots – decoction taken orally.Bilharziasis
[16]
Pterocarpus angolensis DC.
[Fabaceae]
Tree, shrub over 2 m.
[Tree or shrub]
N, W, C, E, S
Bloodwood (English) Mubvamakovo (Shona) Mubvamaropa (Shona) Mubvinziropa (Shona) Mukambira (Shona) Mukonambiti (Shona) Mukula (Tonga: Zimbabwe) Mukurambira (Shona) Mukwa (English) Mukwa (Shona) Mukwirambira (Shona) Mushambaropa (Shona) Muzwamulowa (Tonga: Zimbabwe) Umvagazi (Ndebele)Bark – infusion taken orally.
Flowers – applied to incision on area affected.
Roots (fresh)
Leaves
Stem
Bark
Bilharziasis (Urinary schistosomiasis)
[16, 21, 22, 23]
Ricinus communis L
[Euphorbiaceae]
Tree, annual, perennial, shrub over 2 m, shrub under 2 m.
[Tree or shrub]
Introduced
Castor-oil plant (English)Roots – infusion taken orally.
Leaves and roots – infusion taken orally.
Bilharziasis (Urinary schistosomiasis)
[16, 21, 37]
Sansevieria hyacinthoides (L.) Druce
[Dracaenaceae]
Evergreen, perennial herb
[Herb]
N, C, E, S
Mother-in-law’s tongue (English)
Piles roots (English)
Bowstring hemp (English)
Leaves, rhizome and roots.Intestinal parasites and worms.
[38]
Sclerocarya birrea (A. Rich.) Hochst. subsp. caffra (Sond.) Kokwaro
[Anacardiaceae]
Medium-sized deciduous tree.
[Tree]
N, W, E, S
Marula (English) Mufuna (Shona) Mupfura (Shona) Mushomo (Shona) Umganu (Ndebele)Roots – infusion taken orally.
Bark
Bilharziasis
[16, 19]
Securidaca longipedunculata Fresen
[Polygalaceae]
Tree, shrub over 2 m.
[Tree or shrub]
N, W, C, E, S
Chipvufanana (Shona) Mufufu (Shona) Munyapunyapu (Shona) Munyazvirombo (Shona) Mutangeni (Shona) Umfufu (Ndebele) Violet tree (English)Roots – infusion taken orally.Tapeworm and hookworm.
Bilharziasis (Urinary schistosomiasis)
[16, 21, 37]
Senna italica Mill. subsp. micrantha (Brenan) Lock
Cassia italica (Mill.) F.W. Andr.
[Fabaceae]
Prostrate or ascending perennial herb or small shrub
[Herb or shrub]
W, C, S
The Port Royal senna (English)Bilharziasis
(Urinary schistosomiasis) [21]
Senna petersiana (Bolle) Lock
Cassia petersiana Bolle
[Fabaceae]
Tree, shrub over 2 m.
[Tree or shrub]
N, C, E, S
Eared senna (English) Monkey pod (English)Bilharziasis (Urinary schistosomiasis)
[21]
Senna singueana (Delile) Lock
Cassia singueana Delile
[Fabaceae]
Tree, shrub over 2 m.
[Tree or shrub]
N, W, C, E, S
Isihaqa esincinyane (Ndebele) Mudyamhungu (Shona) Munzungu (Shona) Mushayanyoka (Shona) Scrambled egg (English) Sticky pod (English) Winter cassia (English) Winter-flowering senna (English)Leaves, stem, roots and bark.Bilharziasis (Urinary schistosomiasis)[23]
Solanum campylacanthum
Solanum delegoense Dunal S. incanum
[Solanaceae]
[Shrub]
Introduced
Nhundurwa (Shona)
Bitter apple (English) Intume (Ndebele) Munhomboro (Shona) Munhundurwa (Shona) Poison apple (English) Snake apple (English) Sodom apple (English) Thorn apple (English) Umdulukwa (Ndebele)
Leaves
Roots
Bilharziasis (Urinary schistosomiasis)
[16, 21, 37]
Steganotaenia araliacea Hochst.
[Apiaceae]
[Tree]
N, C, E, S
Carrot Tree (English)Leaves and stem.
Roots and stem.
Bilharziasis (Urinary schistosomiasis)
[38]
Strychnos occuloides Bak.
[Loganiaceae]
Small deciduous tree.
[Tree]
N, W, E, S
Corky monkey-orange (English) Muhumi (Shona) Mushumwi (Shona) Mutamba muzhinyu (Shona)Bilharziasis (Urinary schistosomiasis)
[16, 19]
Terminalia brachystemma Welw. ex Hiern
[Combretaceae]
Shrub or small semi-deciduous tree.
[Tree or shrub]
N, W, C, E, S
Kalahari cluster-leaf (English)Leaves
Roots Fruit
Bilharziasis (Urinary schistosomiasis)
[16, 21, 37]
Terminalia sericea Burch ex. DC
[Combretaceae]
Small to medium-sized deciduous tree.
[Tree]
Introduced
Mangwe (Shona) Mukonono (Shona) Mususu (Shona) Mutabvu (Shona) Silver cluster-leaf (English) Silver terminalia (English) Umangwe (Ndebele)Roots – mixed with Vigna unguiculata seeds and cooked in soup.
Roots – decoction taken orally.
Bilharziasis
Worms in anus and arms.
[16, 21, 37]
Toddalia asiatica (L.) Lam.
Toddalia aculeata Pers.
[Rutaceae]
[Climber, liane.]
N, C, E, S
Chikafusi (Shona) Climbing orange (English) Cockspur orange (English) Gato (Shona) Mubhatakhamba (Ndau) Rukato (Shona)Bilharziasis (Urinary schistosomiasis)
[38]
Trichilia emetica Vahl subsp. emetica
Trichilia roka Chiov.
[Meliaceae]
Medium-sized to large evergreen tree.
[Tree]
N, W, E, S
Banket mahogany (English) Muchichiri (Shona) Mutsikiri (Shona) Natal mahogany (English)Leaves
Roots and roots bark.
Bilharziasis (Urinary schistosomiasis)
[16, 19]
Trichodesma ambacense Welw. subsp. hockii (De.Wild) Brummitt
[Boraginanceae]
Perennial herb.
[Herb]
N, W, C, E, S
Blue Bells of St. Mary’s (English) Gwiramwaka (Shona)Tuber – is ground into powder and taken orally.Bilharziasis
[16, 21, 37]
Vangueria infausta Burch.subsp. infausta
[Rubiaceae]
Small deciduous tree.
[Herb]
W, C, E, S
Munjiro (Shona) Munzviro (Shona) Munzvirwa (Shona) Umthofu (Ndebele) Umviyo (Ndebele) Velvet wild medlar (English)Fruit, leaves and roots – decoction taken orally.
Roots
Parasitic worms
[29, 39]
Roundworm
Vernonia amydalina Del
[Asteraceae]
Tree, shrub over 2 m.
[Tree or shrub]
N, W, C, E, S
Bitter-tea vernonia (English) Dembezeko (Shona) Inyathelo (Ndebele) Musikavakadzi (Shona) Muzhozho (Shona) Nyareru (Shona) Tree vernonia (English)Roots – are mixed with Vigna unguiculata seeds and a soup is prepared and taken orally.
Leaves and stem.
Roots.
Roots bark
Bilharziasis (Urinary schistosomiasis)
[16, 23]
Vernonia musofensis S. Moore var. miamensis (S. Moore) G.V. Pope
Vernonia philipsoniana Lawaltree
[Asteraceae]
[Herb]
N, C, E
Roots – are mixed with Vigna unguiculata seeds and a soup is prepared and taken orally.Bilharziasis
Warburgia sulcate
[Canellaceae]
Evergreen tree.
[Tree]
No information
Bilharziasis
[40]
Ximenia caffra Sond.
[Olacaceae]
Tree, shrub over 2 m.
[Tree or shrub]
N, W, C, E, S
Munhengeni (Shona) Mutengeni (Shona) Mutsvanzva (Shona) Sourplum (English) Umthunduluka (Ndebele)Roots – infusion taken orally.
Roots (fresh)
Leaves and stem.
Roots bark.
Bilharziasis (Urinary schistosomiasis)
[16, 21, 22, 23, 40]
Zanthoxylum chalybeum Engl. [Rutaceae]Tree, shrub over 2 m.
Tree or shrub
N, W, C
Kundanyoka knobwood (English)
Mukundanyoka (Shona)
Bilharziasis (Urinary schistosomiasis)
[21]
Ziziphus mucronata Willd
[Rhamnaceae]
Small to medium-sized tree.
[Tree]
N, W, C, E, S
Buffalo-thorn (English) Chinanga (Shona) Muchecheni (Shona) Umpasamala (Ndebele) Umphafa (Ndebele)Roots – infusion taken orally.
Leaves and stem
Roots bark
Roots
Bilharziasis (Urinary schistosomiasis)
[16, 21, 23, 40]

Table 1.

Medicinal plants used to treat and manage bilharziasis and other parasitic infections in Zimbabwe: Family and botanical name, local name, part used, mode of preparation, growth form, distribution and ethnomedicinal uses.

Figure 2.

Growth habit of medicinal plant species used to treat and manage bilharziasis and other parasitic infections in Zimbabwe.

Figure 3.

Parasites managed or treated using medicinal plants in Zimbabwe.

Figure 4.

Mode of preparation of medicinal plant species used to treat and manage bilharziasis and other parasitic infections in Zimbabwe.

Figure 5.

Plant parts used for medicinal preparations used for the management of bilharziasis and other parasitic infections in Zimbabwe.

Figure 6.

Biological targets of tested parasites of medicinal plants reported.

3.3 Screening

Retrieved articles were first screened based on the titles and abstracts for relevance to the study excluding articles that reported on malaria and on veterinary use of medicinal plants. For example, we excluded articles on bovine mastitis and Oriental medicines, although they appeared in the search results. However, articles that included both malaria and schistosomiasis were considered. The eligible full articles were then assessed further for inclusion in the study using the inclusion/exclusion criteria.

3.4 Inclusion and exclusion criteria

Full-text articles that at least reported on ethnobotany of Zimbabwean medicinal plants written in English and published in peer-reviewed journals, reports, books, theses and dissertations dated 31 December 2020 were considered. All publishing years were included without any geographical restrictions. Articles that reported data not relevant to the study or reviews or those not written in English were excluded from the study.

3.5 Data extraction

A data collection tool was designed in Microsoft Excel (Microsoft Corporation, USA) to capture data on different aspects of Zimbabwean medicinal plants. Three reviewers independently extracted relevant data from the included articles regarding the ethnobotany of Zimbabwean medicinal plants. For ethnobotanical data, the diseases or ailments managed, parts used and mode of preparation and administration were captured. The collected data were checked for completeness and processed independently by two other reviewers.

Advertisement

4. Results and discussion

From the several scientific papers reviewed based on ethnobotanical surveys of different areas of Zimbabwe, the results are presented in the following sections.

4.1 Literature search and publications

A total of 750 reports were retrieved out of which 138 met the inclusion criteria and were reviewed. Most of the articles were published in the 2010–2019 decade, indicating a lot of research is being done as compared to the preceding decades. This could be due to: (1) the growing need for more effective and less toxic medicinal products of plant origin, (2) emerging antimicrobial resistance that has rendered most chemotherapeutic agents less effective, (3) new disease outbreaks like COVID-19 and (4) increase in noncommunicable diseases such as cancers, hypertension, diabetes mellitus and sexual dysfunction that require readily available, affordable, effective and safe therapies.

4.2 Ethnobotanical surveys and distribution of medicinal plants traditionally used to treat and manage bilharziasis and other parasitic infections in Zimbabwe

Based on soil, rainfall regime and several other factors, Zimbabwe is divided into 5 agro-ecological regions. A total of 43 of the medicinal plants reported in this review are widely distributed throughout the Northern (N), Eastern (E), Central (C), Western (W) and Southern (S) regions of Zimbabwe as represented in Figure 7. The remaining plant species were distributed in several regions across the country with n = 9 plant species distributed in 4 regions, n = 8 in 3 regions, n = 2 in 2 regions and n = 1 in 1 region. A total of n = 3 plant species are being cultivated [Celtis africana, Musa sp., Phaseolus vulgaris] and n = 1 has been recently introduced Ricinus communis. Warburgia sulcata had no information on distribution in Zimbabwe (Table 1).

Figure 7.

General distribution of medicinal plants in different floristic regions of Zimbabwe.

The current review indicates that there are at least 68 species of plants belonging to 63 genera in 33 families used to treat and manage bilharziasis and other parasitic infections in Zimbabwe (Table 1).

Generally, the family with the highest number of medicinal plants in Zimbabwe was the Fabaceae family represented with a total of 17 plants followed by Combretaceae (n = 5), Apocynaceae (n = 5), Anacardiaceae (n = 4), Rubiaceae (n = 3), Euphorbiaceae (n = 3) Asteraceae (n = 3), Rutaceae (n = 2) and Meliaceae (n = 2). A further 24 more plant families which only had one plant represented were also recorded, giving a total of 33 families. These included Apiaceae, Asparagaceae, Bignoniaceae, Boraginanceae, Canellaceae, Celastraceae, Dracaenaceae, Ebenaceae, Hydroraceae, Loganiaceae, Lorantaceae, Menispermaceae, Musaceae, Olacaceae, Poaceae, Polygalaceae, Proteaceae, Rhamnaceae, Salicaceae, Sapindaceae, Solanaceae, Ulmaceae, Verbenaceae and Vitaceae.

Hutchings et al. [17] reported similar use of some medicinal plants reported in this study to treat and manage bilharziasis: Abrus precatorius, Cassia abbreviata, Cissampelos mucronata, Euclea divorum, Faurea saligna, Gymnosporia senegalensis (Maytenus senegalensis), Mondia whitei, Pterocarpus angolensis, Sclerocarya birrea and Ximenia caffra. Other studies reported similar anthelmintic medicinal plants; Dicoma anomala - Intestinal worms [15]; Pterocarpus angolensis - General use against intestinal worms, Sclerocarya birrea - Intestinal worms [18]; Securidaca longipedunculata – Tapeworm, Vangueria infausta - Roundworm [238]; Ximenia caffra - Intestinal worms [226]. These medicinal plants have been compiled by Cock et al. [10] review of Southern Africa.

4.3 Growth habit, parts used and mode of preparation of medicinal plants used to treat and manage bilharziasis and other parasitic infections in Zimbabwe

According to Figure 2, the frequency and type of plants used to treat and manage bilharziasis and other parasitic infections is as follows; tree (n = 23), tree, tree or shrub (n = 18), herb (n = 9), shrub (n = 5), climber, liane (n = 3), herb or shrub (n = 3), climber (n = 3), grass (n = 1), liane (n = 1), root parasite (n = 1) and shrub or climber (n = 1).

According to Figure 3, the parasites managed or treated are schistosomes (fluke or worm) 79%, unspecified parasitic worms 11%, hookworm 5%, tapeworm 4% and roundworm 1%. Midzi et al. [9] carried out a nationwide survey in Zimbabwe in 2010 and 2011 to map schistosomiasis and STH. The survey was conducted among primary school children. The study reported a high national prevalence of schistosomiasis (22.7%) and STH (5.5%). The common schistosome was Schistosoma haematobium with a prevalence of 18.0% while that of Schistosoma mansoni was 7.2%. The most common STH were hookworms (Ascaris lumbricoides and Trichuris trichiura) with a prevalence of 3.2% followed by A. lumbricoides and T. trichiura with prevalence of 2.5 and 0.1%, respectively [9]. Mutsaka-Makuvaza et al. [239] recorded a 13.3% prevalence in Madziwa, Shamva District among preschool-aged children. Therefore, there has been high use of medicinal plants to treat schistosomiasis due to its high prevalence in Zimbabwe.

The most frequently used mode of preparation was infusion 46% followed by decoction 22%, soup 19% and powder 13% (Figure 4). Methods of preparation of plant medicines seem to vary according to the area and subculture of the people in that region. Plant materials may be used as fresh or dry. However, the review observed a high usage of fresh material. Preparation of decoctions is carried out by boiling the plant material in water to such an extent that the volume of water is reduced to half. An infusion is a less concentrated version of a decoction and usually prepared by adding the plant material to water. There is a predominant use of decoctions and infusions which when both combined contribute to 68% of the gross mode of preparation. This may be attributed to the quick, low cost and easy to administer properties of these methods. Unfortunately, some of the ethomedicinal papers did not highlight the mode of preparation of the medicinal plants used [21, 22, 25, 26, 28].

The plant parts that are frequently used to treat and manage bilharziasis and other parasitic infections are shown in Figure 5. It appears the roots (46%) are the main target plant parts used. The use of the roots, bark and / or stem are the least environmentally sustainable part of the plant as its collection may lead to death of the plant however, they are the most preferred source of medicine. A number of papers did not highlight the plant parts used: [21, 22, 25, 26, 28].

4.4 Pharmacological properties of medicinal plants traditionally used to treat and manage bilharziasis and other parasitic infections in Zimbabwe

Some of the plant species have demonstrated a wide range of medicinal uses across different clinical conditions and therefore utilizing scientific methods to fully understand their pharmacological consequences could be vital. We have summarized the results of the pharmacological properties of 61 (89.7%) of the plant species (Table 2). The activities that were reported to be key in the treatment of bilharzia and parasitic infections were mainly dominated by the anthelmintic/antiparasitic properties. A medicinal plant with anthelmintic activity is responsible for treating and managing infections caused by a broad range of parasites (trematodes, worms, cestodes and nematodes) [240] (Table 3). Other complementary pharmacological properties include antioxidant, antibacterial and antifungal activities responsible for managing and treating parasitic infections (Table 2).

Scientific namePharmacological propertiesBiological targetToxicological evaluationReference
Abrus precatorius L. subsp. africanus Verde.*Anthelmintic, analgesic, antimicrobial, antimigraine, anti-bacterial, anti-fungal, anti-tumor, anti-spasmodic, anti-diabetic, anti-serotonergic and anti-inflammatory activities.Cestodes
Schistosomes
Safe
LD50 > 5000 mg/kg
[23, 41, 42, 43, 44, 45, 46]
Acacia karoo HayneAnalgesic, HIV1 reverse transcriptase, antilisterial, anti-gonococcal, anti-diabetic, anti-inflammatory, antioxidant, antibacterial, antifungal, antimalarial, antimicrobial, *anthelmintic and anti-mycobacterial activities.CestodesWeak or low toxicity or mildly toxic
LD50 < 1600 mg/kg
[23, 47, 48, 49]
AIbizia antunesiana Harms*Anthelmintic and oxidant activities.Cestodesno records found[23, 31, 50]
Asparagus spp except A. asparagoides LAnalgesic, diuretic, *anthelmintic, anti-inflammatory and antimicrobial activities.Nematodes: Haemonchus contortusSafe
LD50 > 5000 mg/kg
[51, 52, 53, 54]
Burkea africanus Hook.Antioxidant, anti-diarrhoeal, antibacterial, analgesic, anti-inflammatory, anti-cholinesterase and *anthelmintic activities.Nematodes: Haemonchus contortusSafe
LD50 > 5000 mg /kg
[55, 56, 57]
Carissa spinarum L.
Carrisa edulis Vahl
Anti-plasmodial, diuretic, antioxidant, *antihelmintic, antiherpetic, anti-inflammatory and antiviral activities.Earthworms: Pheretima posthuma.Safe
LD50 > 2000 mg in rats
[58, 59, 60, 61, 62]
Cassia abbreviata Oliv.*Anthelmintic, antiviral, antioxidant, antimicrobial, abortifacient, anti-diabetic, anti-inflammatory, hepatoprotective and antimicrobial activities.CestodesSafe
LC50–1319.37 ± 356.63 μg/ml
[23, 63, 64, 65, 66, 67, 68]
Catunaregam swynnertonii (S. Moore) Bridson
Catunaregum spinosa sensu Verdcourt subsp. spinosa
*Anthelmintic, antioxidant, emetic, nauseant, anti-allergic, antipyretic, anti-inflammatory, expectorant, abortifacient, antibacterial, human cyclooxygenase (COX)-2 inhibitory effects, analgesic, immunomodulatory and a prominent protection of DNA activities.Nematodes
Earthworm: Eisinia Fetida
Safe
LD50 up to 2000 mg/kg.
[56, 69, 70]
Celtis africana Burm. f.*Anthelmintic, prokinetic, laxative, antidiarrheal, spasmolytic, antioxidant, anti-inflammatory andweak to moderate acetylcholinestrease enzyme inhibition activities.Cestodesno records found[23, 71, 72]
Cissampelos mucronata A. Rich.Hypoglycemic, antivenin, anti-diabetic, anti-ulcer, antispasmodic, anti-diarrhoeal and possess significant effects on male fertility.no records foundSafe
LD50 > 5000 mg/kg
[73, 74, 75]
Cissus quadrangularis L.Bone healing, *anthelmintic, antiulcer, anti-inflammatory, anti-tumor, molluscicidal, gastro-protective, anti-osteoporotic, antioxidant and antimicrobial activities.Earthworms: Pheretima posthumaSafe
LD50 - 3000 mg/kg
[76, 77, 78, 79]
Cleridendrum ternatum Schinzno records foundno records foundno records found
Combretum heteroense Schinz subsp. heteroense*Anthelmintic (antischistosomal), antifungal, anti-inflammatory and cytotoxicity activities.Nematode: Worms of C. elegans var. Bristol
Schistosomes: Worms of S. haematobium
no records found[80, 81, 82]
Combretum imberbe WawraAntibacterial, anthelmintic, antioxidant, antifungal, *anthelmintic (antischistosomal), anti-hyperglycemic, anti-malarial, anti-snake and anti-inflammatory activities.Nematode: Worms of C. elegans var. Bristol
Schistosomes: Worms of S. haematobium
Highly toxic
LC50–168.6 μg/mL
[80, 81, 82, 83, 84, 85]
Combretum zeyheri SondAntibacterial, anti-inflammatory, cytotoxicity against human cancer cell line, *anthelmintic (antischistosomal), antioxidant, antifungal and anti-proliferative activities.Schistosomes: Worms of S. haematobiumHighly toxic
LC50–16 μg/ml to 159 μg/ml
[28, 56, 80, 81]
Crossopteryx febrifuga (G. Don) Benth.Anti-inflammatory, *anthelmintic, anticonvulsant, analgesic, anti-plasmodial, antipyretic, antihyperglycemic, anti-proliferative and hypolipidemic activities.Nematodes: Haemonchus contortusSafe
LD50–5000 mg/kg
[51, 86, 87, 88, 89, 90, 91]
Croton gratissimus BurchGood antioxidant, anti-diabetic, anti-inflammatory, antibiotic, antiviral, analgesic, anticonvulsant, *anthelmintic (antiprotozoal and antileishmanial), anticancer, antiulcer, immunomodulatory, anti-pyretic, anti-plasmodial, hypolipidemic, antiarthritic, anti-eczemic, antihistimic and anti-coronary activities.Protozoa: T. b. rhodesiense
Leishmania: Leishmania donovani
Highly toxic
LC50
Hexane fraction - 25.3 ± 0.87 μg/ml.
DCM fraction - 67.3 ± 0.32 μg/ml.
[92, 93, 94, 95, 96, 97, 98]
Cynanchum viminale (L.) L. subsp. viminale
Sarcostemma viminale (L) R.Br
Antipyretic, analgesic, and anti-inflammatory activities.no records foundno records found[99]
Dicoma anomala Sond.*Anthelmintic, anticancer, antioxidant, antihyperglycemic, anti-inflammatory and antimicrobial activities.CestodesSafe
LC50 value of 3040 ± 1060 μg/ml
[34, 35, 100]
Diplorhynchus condylocarpon (Muell Arg.) Pich.Sympatholytic, anti-amoebic, anti-plasmodial, analgesic, antibacterial, antimalarial, anti-inflammatory and antioxidant activitiesno records foundSafe
LD50 > 2000 mg/kg
[56, 101, 102, 103]
Elephantorrhiza goetzei (Harms)*Anthelmintic, antifungal, antioxidant, antibacterial, antiviral, and cytotoxicity activities.Cestodes
Schistosomes
Moderately toxic
LC50−356.55 ± 24.55 μg/ml.
[23, 32]
Eriosema englerianum Harms.Antimicrobial, antibacterial, antifungal and antioxidant activities.no records foundno records found[104, 105]
Erythrina abyssinica DC.Antimycobacterial, antifungal, hypoglycemi, antiplasmodial, hepatoprotective, *antihelminthic and antimicrobial activities.Nematodes: Ascaridia galliSafe
LC50–5440 ± 0 μg/ml.
[100, 106, 107, 108, 109]
Euclea divorum HiernAntimicrobial, diuretic cytotoxic, antibacterial, oxytocic, antifungal, diuretic, antioxidant, *antihelminthic and anti-plasmodial activities.Nematodes: Caenorhabditis elegansSafe
LD50 - 2000 mg/kg
[110, 111, 112, 113]
Euphorbia schinzii Paxno records foundno records foundno records found
Faurea saligna HarvAntifungal activity.no records foundno records found[114]
Flacourtia indica (Burm.f) MerrAntimicrobial, anti-diabetic, anthelmintic hepatoprotective, antiviral, *anthelmintic (antitrypanosomal and antileishmanial), anti-inflammatory, antimalarial, anti-plasmodial, antioxidant and anti-asthmatic activities.Trypanosome: Trypanosoma brucei brucei, Trypanosoma brucei rhodesiense, Trypanosoma cruzi
Leishmania: Leishmania donovani
Moderately toxic
LC50−467.31 ± 39.01 μg/ml
[19, 66, 115, 116, 117, 118, 119]
Gymnosporia senegalensis Loes
Maytenus senegalensis (Lam) Exell
*Anthelmintic (antileishmanial), antioxidant, antiviral, antibacterial and antifungal activities.CestodesSafe
LC50–2185.61 ± 872. 25 μg/ml
LD50 > 1600 mg/kg
[19, 23, 66, 120, 121, 122]
Khaya anthotheca (Welw.) C. DC. Khaya nyasica Bak.f.Antimicrobial, antioxidant, *anthelmintic (antitrypanosomal and antileishmanial), antiplatelet, antiviral and anti-plasmodial activities.Trypanosome: Trypanosoma brucei rhodesiense and Trypanosoma cruzi Leishmania: Leishmania donovaniModerately toxic LC50 - 482.19 ± 43.49 μg/ml.[19, 66, 116, 123, 124]
Hydnora abyssinica A. Braun ex Schweinf.
Hydnora solmsiana Dinter
Antibacterial, antioxidant, anti-diarrhoeal, antiglycation and antifungal activities.no records foundWeak or low toxicity or mildly toxic
LD50 > 1600 mg/kg
[125, 126, 127, 128]
Kigellia africana (Lam.) Benth.
Kigelia pinnata (Jacq.) DC.
Antiplasmodial, antiviral, antiulcer, anticancer, anti-diarrhoeal, antimicrobial, antioxidant, anti-diabetic, *anthelmintic (antitrypanosomal), effects on reproductive system and anti-inflammatory activities.Trypanosomes: Trypanosoma brucei and Trypanosoma bruceirhodesienseSafe
LD50 > 5000 mg/kg
[66, 129, 130, 131]
Landolphia kirkii Dyer ex Hook. f.no records foundno records foundno records found
Lannea discolor (Sond.) Engl.*Anthelmintic (nematicidal), antibacterial, antimycobacterial, antifungal, antioxidant and antiplasmodial activities.CestodesWeak or low toxicity or mildly toxic
LC50 values ranging 0.408 mg/mL to >1.0 mg/mL
[23, 34, 35, 132]
Lannea edulis (Sond.) Engl.*Anthelmintic, anti-human immunodeficiency virus, antihyperglycemic, antihyperlipidemic, antimalarial, antimicrobial, antioxidant and cytotoxicity activities.CestodesSafe
LD50 > 6000 mg/kg
[23, 36, 100]
Lecaniodiscus fraxinifolias Bak.*Anthelmintic activity.Cestodesno records found[23]
Loranthus on Dichrostachys cinerea,no records foundno records foundno records found
Mondia whitei (Hook.f.) SkeelsAntidepressant, anti-diarrheal, antiepileptic, antibacterial, aphrodisiac, anti-convulsant, pro-erectile, antimicrobial, tyrosinase-inhibitory, anti-inflammatory, androgenic *anthelmintic, anti-tyrosinase, antioxidant, anticancer anti-spermatogenic and antifertility activities.SchistosomesSafe
LD50 > 5000 mg/kg
[133, 134, 135, 136]
Mucuna coriacea Baker subsp. irritans (Burtt Davy) Verdc.no records foundno records foundno records found
Musa sp.Antioxidant, antibacterial, antiviral, anti-ulcerogenic, antithrombotic, anti-allergic, anti-inflammatory, antiallergenic, anti-diabetic, diuretic, mutagenecity, wound healing, antidiarrhoeal, *anthelmintic, antimalarial, anti-snake venom and vasodilatory activities.Nematodes: Haemonchus contortus and Trichostrongylus colubriformisSafe
LD50 > 5000 mg/kg
[137, 138, 139, 140, 141]
Ozoroa reticulata (Baker f.) R. Fern. & A. Fern.
Ozoroa insignis Del. subsp. reticulata (Bak.f.) Gillett
Heeria reticulata Engl.
Antimicrobial, cytotoxic, antibacterial and *anthelmintic activities.Cestodes
Schistosomes
Highly toxic
LC50 ranging 2.21–10.63 μg/ml
[23, 31, 142, 143, 144, 145]
Peltophorum africanum Sond.Antibacterial, antifungal, antiviral, antioxidant and *anthelmintic activities.SchistosomesWeak or low toxicity
LC50 ranging 882–1060 ± 106 μg/ml
[23, 65, 100]
Phaseolus vulgaris LHypocholesterolemic, nephroprotective, anticancer, anti-hypertensive, diuretic, neuroprotective, antifertility, analgesic, antibacterial, hepatoprotective, antiobesity, osteoprotective, anti-inflammatory, antioxidant, antidiabetic, *anthelmintic, immunostimulatory, cardio-protective, litholytic, trypsin and α-amylase inhibitor activities.Nematodes: Trichostrongylus colubriformis and Teladorsagia circumcinctaSafe
LD 50 up to 2000 mg/kg
[146, 147, 148, 149, 150, 151]
Piliostigma thonningii (Schumach.) Milne-Redh.*Anthelmintic (antileishmanial), anti-oxidative, antiviral, antipyretic, antibacterial and anti-inflammatory activities.Cestodes
Nematodes: Haemonchus contortus
Safe
LD50 > 5000 mg/kg in rats.
[23, 51, 152, 153, 154]
Pogonarthria squarrosa (Licht.) Pilg.no records foundno records foundno records found
Pterocarpus angolensis DC.*Anthelmintic, antibacterial, anti-plasmodial, anti-inflammatory and antifungal activities.CestodesWeak or low toxicity or mildly toxic
LC50 ranging 478–1320 ± 266 μg/ml.
[23, 100, 155, 156, 157]
Ricinus communis LAnticonceptive, antioxidant, antidiabetic, antifertility, anti-inflammatory, antioxidant, *anthelmintic, hepatoprotective, insecticidal, wound-healing, anti-asthmatic, lipolytic, immunomodulatory and antimicrobial activities.NematodesSafe
LD50–8000 mg/kg
[158, 159, 160, 161]
Sansevieria hyacinthoides (L.) Druce*Anthelmintic, antibacterial, antifungal and antioxidant activities.Nematode: Caenorhabditis elegansno records found[31, 38, 110, 162, 163, 164]
Sclerocarya birrea (A. Rich.) Hochst. subsp. caffra (Sond.) KokwaroAnti-diarrhoeal, anti-diabetic, anti-inflammatory, anti-plasmodial, *anthelmintic, antimicrobial, antioxidant, antihypertensive, anti-convulsant and antinociceptive activities.Nematode: Haemonchus contortusSafe
LC50–1112.37 ± 210.04 μg/ml.
[19, 51, 66, 165]
Securidaca longipedunculata FresenAntibacterial, anti-plasmodial, *anthelmintic and antifungal activities.Nematode: Haemonchus contortusModerately toxic
LD50 value of 771 mg/kg
[51, 100, 155, 157, 166]
Senna italica Mill. subsp. micrantha (Brenan) Lock
Cassia italica (Mill.) F.W. Andr.
Antibacterial, hypoglycemic effect anti-inflammatory, antipyretic, uteruscontractions, *anthelminthic, antioxidant, antiproliferative, analgesic, prostaglandin (PG) release, antineoplastic and antiviral activities.Nematodes: Haemonchus contortusSafe
LD50 > 5000 mg/kg
[167, 168, 169, 170, 171, 172, 173, 174, 175]
Senna petersiana (Bolle) Lock
Cassia petersiana Bolle
*Anthelmintic, antibacterial, antifungal, cyclooxygenase (COX) inhibitory, antiviral and antimicrobial activities.Nematode: Caenorhabditis elegansno records found[176, 177]
Senna singueana (Delile) Lock
Cassia singueana Del
*Anthelmintic, antioxidant, antiplasmodial, antiulcer, antipyretic, anti-inflammatory and analgesic activities.CestodesSafe
LD50–2150 mg/kg
[23, 178, 179]
Solanum campylacanthum
Solanum delegoense Dunal S. incanum
*Anthelmintic, antinociceptive effect, antipyretic, analgesic, antimicrobial, anti-inflammatory and anti-cytotoxic activities.CestodesSafe
LD50 > 2000 mg/kg
[23, 180, 181, 182, 183, 184]
Steganotaenia araliacea Hochst.*Anthelmintic (antileishmanial and larvicidal), antimitotic, antitubulin, uterotonic, antioxidant, antibacterial, diuretic and antiplasmodial activities.Cestodesno records found[23, 185, 186, 187]
Strychnos cocculoides Bak.Antimalarial and antioxidant activities.no records foundno records found[31, 188, 189]
Termilia sericea Burch ex. DCAntibacterial, antifungal, anti-neurodegenerative, anticancer, antioxidant, antiviral, anti-HIV, anti-fungal, antibacterial, anticancer, lipolytic, wound healing, *anthelmintic (antiprotozoal), anti-inflammatory and anti-oxidant activities.Protozoa: Trichomonas vaginalisToxic
LC50 < 300 μg/ml.
[19, 66, 190, 191, 192, 193, 194, 195, 196]
Terminalia brachystemma Welw.*Anthelmintic, antifungal and antioxidant activities.Cestodesno records found[23, 197, 198]
Toddalia asiatica (L.) Lam.
Toddalia aculeata Pers.
Anti-inflammatory, anti-bacterial, anti-tumor, antifeedant analgesic, anti-HIV, anti-plasmodial, antiviral, *anthelmintic, analgesic, antiplatelet aggregation, wound healing, anticancer, spasmolytic activity and skin whitening activities.Protozoa: Ichthyophthirius multifiliisWeak or low toxicity or mildly toxic
LD50 > 1000 mg/kg
[199, 200, 201, 202, 203, 204, 205, 206]
Trichilia emetica Vahl subsp. emetic
Trichilia roka Chiov.
*Anthelmintic (antischistosomal and antitrypanosomal), anti-diarrhoeal, antifungal, anti-oxidant, anti-infective, anti-inflammatory, antiviral, anticonvulsant, antifeedant, anti-plasmodial, antitussive, antimutagenic, bactericidal hepatoprotective and growth regulating activities.Cestodes
Schistosomes
Trypanosomes: Trypanosoma brucei
brucei and Trypanosoma brucei rhodesiense
Safe
2000 < LD50 < 5000 mg/kg
[23, 207, 208, 209, 210, 211, 212]
Trichodesma ambacense Welw. subsp. hockii (De.Wild) Brummittno records foundno records foundno records found
Vangueria infausta Burch. subsp. infaustaAntibacterial, antifungal, antimycobacterial, anti-inflammatory, antioxidant, *anthelmintic (antileishmanial), anti-plasmodial, antifeedant and prostaglandin synthesis inhibitory activities.Leishmania: Leishmania donovaniModerately toxic
LC50 values ranging 338–416 ± 28.3 μg/mL
[39, 100, 101, 213, 214, 215, 216, 217]
Vernonia amydalina DelAntimicrobial, antimalarial, antithrombotic, antioxidant, antipyretic, analgesic, anti-diabetic, laxative, hypoglycemic, anticancer, *antihelmintic, antifertility, anti-inflammatory, cathartic, antifungal and antibacterial activities.CestodesSafe
LD50–5152.3 mg/kg.
LD50−3721 mg/kg.
[23, 218, 219, 220]
Vernonia philipsoniana Lawaltreeno records foundno records foundno records found
Vigna unguiculata (L.) Walp.Antioxidant, *anthelmintic, antibacterial, anti-diabetic, anti-depressant, anti-sickling, antifungal, antiviral, antimicrobial, antinociceptive, hypocholesterolemic, thrombolytic and hypolipidaemic activities.Earthworms: Edrilus euginiaeSafe
LD50 > 2000 mg/kg
[221, 222, 223, 224, 225]
Warburgia sulcatano records foundno records foundno records found
Ximenia caffra Sond.*Anthelmintic, anti-amoebic, antibacterial, antigonococcal agent, antifungal, anti-inflammatory, antioxidant, anti-parasitic, anti-proliferative, insecticidal, HIV-1 reverse transcriptase (RT) inhibitory and non-mutagenic activities.CestodesHighly Toxic
LC50–11.25 μg/ml
[23,142, 226, 227, 228, 229]
Zanthoxylum chalybeum Engl.Anti-plasmodial, antibacterial, *anthelmintic (antitrypanosomal), antifungal antiviral, anti-hyperglycemic, anti-hyperlidemic and anti-measles virus activities.Nematodes: Ascaris suumSafe
LD50 > 5000 mg/kg
[230, 231, 232, 233, 234, 235]
Ziziphus mucronata WilldAntimicrobial, antiviral, anti-diabetic, anti-inflammatory, anti-oxidant, anti-plasmodial, *anthelmintic and anti-anemic activities.Schistosomes
Nematode: Caenorhabditis elegans
Safe
LC50 > 1000 μg/ml
LD50 > 5000 g/kg
[23, 236, 237]

Table 2.

Pharmacological and toxicological evaluation of medicinal plants used to treat and manage bilharziasis and other parasitic infections in Zimbabwe.

In vitro experiments were carried-out and reported by Mølgaard et al. [23] demonstrating dose-dependent anthelmintic activity. Anthelmintic activities reported were conducted on a number of biological targets (Figure 6): Cestodes; Earthworms: Pheretima posthuma, Edrilus euginiae, Eisinia fetida; Leishmania: Leishmania donovani; Nematode: Ascaris suum, Ascaridia galli, Caenorhabditis elegans, Chabertia ovina, Cooperia spp., Haemonchus contortus, Trichostrongylus spp., Trichostrongylus colubriformis, Teladorsagia circumcincta, Teladorsagia spp; Protozoa: Ichthyophthirius multifiliis, Trichomonas vaginalis, T. b. rhodesiense; Schistosomes: Schistosoma haematobium; Trypanosome: Trypanosoma brucei brucei, Trypanosoma brucei rhodesiense, Trypanosoma cruzi. More studies should be carried out on more prevalent biological targets such as Schistosomes: Schistosoma haematobium.

* signifies the major pharmacological activity attributed by the different plant species of plants which is the anthelmintic activity.

Scientific nameAnthelmintic activity
Lethal concentrations after 1 h
Abrus precatoriusaCestodes: Stem 3.0 Root 1.2 mg/ml
aSchistosomes: Stem 1.5 Root 0.6 mg/ml
Acacia karooaCestodes: Leaves 3.1 mg/ml Root 17 mg/ml
cSchistosomes: Leaves 103 mg/ml
AIbizia antunesianaaCestodes: Leaves and stem 16.8 mg/ml Root bark 6.3
cSchistosomes: Root bark 100 mg/ml
Cassia abbreviataaCestodes: Root and root bark 17.1 mg/ml
Celtis africanabCestodes: Leaves 63.0 mg/ml
Dicoma anomalaaCestodes: Root 31.0 mg/ml
Elephantorrhiza goetzeiaCestodes: Stem bark 4.2 mg/ml fruits 12.1 mg/ml Root 17.4 Leaves and stem 15.9 mg/ml
aSchistosomes: Stem bark 0.8 mg/ml
Gymnosporia senegalensis
Maytenus senegalensis
aCestodes: Leaves and stem 25.0 mg/ml Root 25.0 mg/ml Root bark 2.5 mg/ml
bSchistosomes: Root bark 100 mg/ml
Lannea discolorbCestodes: Leaves and stem 10 mg/ml Root and root bark 12.9 mg/ml
Lannea edulisbCestodes: Leaves and stem 4.0 mg/ml
Lecaniodiscus fraxinifoliasaCestodes: Leaves and stem 6.3 mg/ml Root 6.4 mg/ml
Ozoroa reticulata
Ozoroa insignis
aCestodes: Leaves 2.5 mg/ml Schistosomes: 34.0 mg/ml
aCestodes: Stem bark 51.0 mg/ml
aCestodes: Root bark 0.8 mg/ml
aSchistosomes: Root bark 26.3 mg/ml Leaves + stem 25.3 mg/ml
Peltophorum africanumcSchistosomes: Leaves and stem 100 mg/ml
Piliostigma thonningiiaCestodes: Root and root bark 30.8 mg/ml
Pterocarpus angolensisaCestodes: Leaves 102.0 mg/ml Bark 51.3 mg/ml
cSchistosomes: Leaves 102, stem 117 mg/ml
Senna singueana
Cassia singueana
aCestodes: Leaves ad stem 15.9 mg/ml Root bark 17.2 mg/ml
Solanum campylacanthum
Solanum delegoense
aCestodes: Leaves 50.2 mg/ml
Steganotaenia araliaceaaCestodes; Leaves and stem 62.7 mg/ml
Terminalia brachystemmaaCestodes: Leaves 13.4 mg/ml, Root 33.3 mg/ml, Fruit 1 66.5 mg/ml, Fruit 2 15.4 mg/ml
Trichilia emetica
Trichilia roka
bCestodes: Root and root bark 84.7 mg/ml
bSchistosomes: Root 6.25 mg/ml
bTrypanosomes: Leaves Trypanosoma brucei
brucei - 14.9 mg/ml and Trypanosoma brucei rhodesiense - 8.6 mg/ml
Vernonia amydalinabCestodes: Root 1.7 mg/ml Root bark 59.5 mg/ml
Ziziphus mucronatacSchistosomes: Root bark 101 mg/ml

Table 3.

Anthelmintic screening of Zimbabwean plants traditionally used against schistosomiasis [23].

All cestodes: schistosomules died.


Some of the cestodes: schistosomules died.


No cestodes: schistosomules died.


Schistosomules of Schistosoma mansoni, Cestodes of Hymenolepis dimin.

4.5 Toxicological evaluation of medicinal plants used to treat and manage bilharziasis and other parasitic infections in Zimbabwe

Out of the medicinal plants listed in Table 1, a total of 47 species (69.1%) have been subjected to toxicological evaluation studies, while the remaining 21 species (30.9%) lacked documented studies in this regard (Table 2). According to Kumari and Kotecha [241] ensuring the safety of herbal medicines is crucial in herbal research due to the potential for adverse effects and interactions. Of the 47 plants with toxicological profiles, the toxicological activities of the extracts were evaluated in several ways, including their effects on liver chang cells, cytotoxic activities on human monocyte cells, genotoxicity and anticancer properties among others. According to Kumari and Kotecha [241] toxicity assessment of herbal medicines involves various techniques, including in vivo, in vitro and cell line studies, as well as modern methods like microarray analysis. The BSLT and rodent acute toxicity experiments were the most common methods used to assess the toxicity of the 47 plants with available toxicological profiles (Table 2). Munodawafa et al. [100] reported that the BSLT and rodent acute toxicity tests were the most common methods used to assess the toxicity of herbal extracts. This is probably because the tests are relatively reliable, accurate, simple and cost-effective.

Munodawafa et al. [100] and Erhabor et al. [242] classified BSLT toxicity by determining the lethal concentration [LC50] of medicinal plant extracts that resulted in 50% mortality in brine shrimps, and the lethal dose [LD50] causing 50% mortality in mice/rats for rodent acute toxicity studies. In the classification of BSLT toxicity, high toxicity was assigned to [LC50] values below 249 μg/mL, moderate toxicity encompassed the range of 250–499 μg/mL, concentrations between 500 and 999 μg/mL were regarded as weak or low in toxicity and values exceeding 1000 μg/mL were considered safe Bussmann et al. [243] and Erhabor et al. [242]. In the rodent acute toxicity tests conducted by Malebo et al. [121], substances with [LD50] values below 50 mg/kg body weight were classified as highly toxic, those within the range of 50–300 mg/kg body weight were considered toxic, 300–1000 mg/kg body weight fell under the category of moderately toxic, 1000–2000 mg/kg body weight were mildly toxic and 2000 up to 5000 mg/kg body weight were classified as non-toxic. Among the 47 plants used for the treatment and management of bilharziasis and other parasitic infections in Zimbabwe, 30 plants (63.8%) were deemed safe/non-toxic, 6 plants (12.8%) exhibited weak or low toxicity or mild toxicity, 5 plants (10.6%) showed moderate toxicity, 1 plant (2.1%) was classified as toxic and 5 plants (10.6%) were highly toxic (Table 4).

Toxicological profileNo of plantsNames of the plant species
Safe or nontoxic
LC50 ≥ 1000 μg/ml
2000 ≤ LD50 ≤ 5000 mg/kg body weight
30Abrus precatorius, Asparagus spp, Burkea africanus, Carissa spinarum, Cassia abbreviata, Senna italica, Catunaregam swynnertonii, Cissampelos mucronata, Cissus quadrangularis, Crossopteryx febrifuga, Dicoma anomala, Diplorhynchus condylocarpon, Erythrina abyssinica, Euclea divorum, Gymnosporia senegalensis, Kigellia africana, Lannea edulis, Mondia whitei, Musa sp., Phaseolus vulgaris, Piliostigma thonningii, Ricinus communis, Sclerocarya birrea, Senna singueana, Solanum campylacanthum, Trichilia emetica, Vernonia amydalina, Vigna unguiculata, Zanthoxylum chalybeum and Ziziphus mucronata
Weak or low toxicity or mildly toxic
500 ≤ LC50 ≤ 999 μg/ml
1000 ≤ LD50 ≤ 2000 mg/kg body weight
6Acacia karoo, Hydnora abyssinica, Lannea discolor, Peltophorum africanum, Pterocarpus angolensis and Toddalia asiatica
Moderately toxic
250 ≤ LC50 ≤ 499 μg/ml
300 ≤ LD50 ≤ 1000 mg/kg body weight
5Elephantorrhiza goetzei, Flacourtia indica, Khaya anthotheca, Securidaca longipedunculata and Vangueria infausta
Toxic
50 ≤ LD50 ≤ 300 mg/kg body weight
1Termilia sericea
Highly toxic
LC50 ≤ 249 μg/ml
0 ≤ LD50 ≤ 50 mg/kg body weight
5Combretum imberbe, Combretum zeyheri, Croton gratissimus, Ozoroa reticulata and Ximenia caffra
No records found21AIbizia antunesiana, Celtis africana, Cleridendrum ternatum, Combretum heteroense, Cynanchum viminale, Eriosema englerianum, Euphorbia schinzii, Faurea saligna, Landolphia kirkii, Lecaniodiscus fraxinifolias, Loranthus on Dichrostachys cinerea, Mucuna coriacea, Pogonarthria squarrosa, Sansevieria hyacinthoides, Senna petersiana, Steganotaenia araliacea, Strychnos cocculoides, Terminalia brachystemma, Trichodesma ambacense, Vernonia philipsoniana and Warburgia sulcata

Table 4.

Toxicological evaluation of medicinal plants used to treat and manage bilharziasis and other parasitic infections in Zimbabwe.

In vitro investigations play a crucial role in the initial screening of compounds; however, these studies do not yield insights regarding the bioavailability, toxicity and in vivo efficacy of the tested extract/compound. Consequently, it is imperative to conduct future in vivo studies utilizing appropriate animal models to comprehensively comprehend the pharmacokinetics and pharmacodynamics of the tested extract/compound. The majority of in vivo studies fail to provide evidence concerning the toxicity and mechanism of action of medicinal plants/compounds, thereby highlighting the neglected nature of this aspect. Researchers are strongly encouraged to assess the toxicity levels and pharmacological actions of the tested plant/compound.

Advertisement

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1. World Health Organization. Schistosomiasis: Key Facts. Geneva: World Health Organization; April 17, 2019. Available from: https://www.who.int/news-room/fact-sheets/detail/schistosomiasis; 2023 [Accessed: July 28, 2023]
  2. 2. Deol AK, Fleming FM, Calvo-Urbano B, Walker M, Bucumi V, Gnandou I, et al. Schistosomiasis—Assessing progress toward the 2020 and 2025 global goals. New England Journal of Medicine. 2019;381(26):2519-2528
  3. 3. World Health Organization. Schistosomiasis (Bilharzia). 2018 [Accessed: July 31, 2023]. Available from: https://www.who.int/health-topics/schistosomiasis#tab=tab_1
  4. 4. World Health Organization. Schistosomiasis. 2021 [Accessed: May 31, 2021]. Available from: https://www.who.int/news-room/fact-sheets/detail/schistosomiasis
  5. 5. World Health Organization. Soil-transmitted helminth infections. 2020 [Accessed: May 31, 2021]. Available from: https://www.who.int/news-room/fact-sheets/detail/soil-transmitted-helminth-infections
  6. 6. Loukas A, Hotez PJ, Diemert D, Yazdanbakhsh M, McCarthy JS, Correa-Oliveira R, et al. Hookworm infection. Nature Reviews Disease Primers. 2016;2(1):1-8
  7. 7. Montresor A, Engels D, Ramsan M, Foum A, Savioli L. Field test of the ‘dose pole’for praziquantel in Zanzibar. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2002;96(3):323-324
  8. 8. World Health Organization. Over 1.8 million children receive treatment for bilharzia and intestinal worms. 2022. [Accessed: August 2, 2023]. Available from: https://www.afro.who.int/countries/zimbabwe/news/over-18-million-children-receive-treatment-bilharzia-and-intestinal-worms-0
  9. 9. Midzi N, Mduluza T, Chimbari MJ, Tshuma C, Charimari L, Mhlanga G, et al. Distribution of schistosomiasis and soil transmitted helminthiasis in Zimbabwe: Towards a national plan of action for control and elimination. PLOS Neglected Tropical Diseases. 2014;8(8):e3014
  10. 10. Cock IE, Selesho MI, Van Vuuren SF. A review of the traditional use of southern African medicinal plants for the treatment of selected parasite infections affecting humans. Journal of Ethnopharmacology. 2018;220:250-264
  11. 11. Moyo M, Aremu AO, Van Staden J. Medicinal plants: An invaluable, dwindling resource in sub-Saharan Africa. Journal of Ethnopharmacology. 2015;174:595-606
  12. 12. Chandra LD. Bio-diversity and conservation of medicinal and aromatic plants. Advances in Plants & Agriculture Research. 2016;5(4):00186
  13. 13. Gafna DJ, Obando JA, Kalwij JM, Dolos K, Schmidtlein S. Climate change impacts on the availability of anti-malarial plants in Kenya. Climate Change Ecology. 2023;5:100070
  14. 14. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group*. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine. 2009;151(4):264-269
  15. 15. Watt JM, Breyer-Brandwijk MG. The medicinal and poisonous plants of southern and eastern Africa being an account of their medicinal and other uses, chemical composition, pharmacological effects and toxicology in man and animal. In: The Medicinal and Poisonous Plants of Southern and Eastern Africa Being an Account of their Medicinal and Other Uses, Chemical Composition, Pharmacological Effects and Toxicology in Man and Animal. 2nd ed. South Afica: E & S. Livingstone; 1962
  16. 16. Gelfland M, Mavi S, Drummond RB, Ndemera B. The Traditional Medical Practitioner in Zimbabwe: His Principles of Practice and Pharmacopoeia. Zimbabwe: Mambo Press; 1985
  17. 17. Hutchings A. Zulu Medicinal Plants: An Inventory. South Africa: University of Natal Press; 1996
  18. 18. Van Wyk BE. Oudtshoorn BV. Briza: Gericke N. Medicinal Plants of South Africa; 1997
  19. 19. Viol DI. Screening of Traditional Medicinal Plants from Zimbabwe for Photochemistry, Antioxidant, Antimicrobial, Antiviral and Toxicological Activities [doctoral dissertation] University of Zimbabwe
  20. 20. Marekerah L. A Survey on the Biological Activities of Selected Plants Used to Manage Diarrhoea and Cancer in Vumba, Zimbabwe. Online: Afribary; 2015
  21. 21. Ndamba J, Nyazema N, Makaza N, Anderson C, Kaondera KC. Traditional herbal remedies used for the treatment of urinary schistosomiasis in Zimbabwe. Journal of Ethnopharmacology. 1994;42(2):125-132
  22. 22. Nyazema NZ, Ndamba J, Anderson C, Makaza N, Kaondera KC. The doctrine of signatures or similitudes: A comparison of the efficacy of praziquantel and traditional herbal remedies used for the treatment of urinary schistosomiasis in Zimbabwe. International Journal of Pharmacognosy. 1994;32(2):142-148
  23. 23. Mølgaard P, Nielsen SB, Rasmussen DE, Drummond RB, Makaza N, Andreassen J. Anthelmintic screening of Zimbabwean plants traditionally used against schistosomiasis. Journal of Ethnopharmacology. 2001;74(3):257-264
  24. 24. Maroyi A. Acacia karroo Hayne: Ethnomedicinal uses, phytochemistry and pharmacology of an important medicinal plant in southern Africa. Asian Pacific Journal of Tropical Medicine. 2017;10(4):351-360
  25. 25. Mangoyi R, Chitemerere T, Chimponda T, Chirisa E, Mukanganyama S. Multiple anti-infective properties of selected plant species from Zimbabwe. Novel Plant Bioresources: Applications in Food, Medicine and Cosmetics. 2014;3:179-190
  26. 26. Magwenzi R, Nyakunu C, Mukanganyama S. The effect of selected Combretum species from Zimbabwe on the growth and drug efflux systems of Mycobacterium aurum and mycobacterium smegmatis. Journal of Microbial & Biochemical Technology. 2014;3(003):1-7
  27. 27. Rodgers CB, Verotta L. Chemistry and biological properties of the African Combretaceae. In: Hostettmann K, Chinyanganya M, Maillard M, Wolffender JL, editors. Chemistry, Biological and Pharmacological Properties of African Medicinal plants. Zimbabwe: University of Zimbabwe Publications; 1996. p. 121-141
  28. 28. Mapfunde S, Sithole S, Mukanganyama S. In vitro toxicity determination of antifungal constituents from Combretum zeyheri. BMC Complementary and Alternative Medicine. 2016;16:1-1
  29. 29. Munodawafa T. Screening of some traditional medicinal plants from Zimbabwe for biological and anti-microbial activity. [Master’s thesis]. University of Zimbabwe. 2012
  30. 30. Maroyi A. An ethnobotanical survey of medicinal plants used by the people in Nhema communal area, Zimbabwe. Journal of Ethnopharmacology. 2011;136(2):347-354
  31. 31. Maroyi A. Traditional use of medicinal plants in south-Central Zimbabwe: Review and perspectives. Journal of Ethnobiology and Ethnomedicine. 2013;9(1):1-8
  32. 32. Maroyi A. Phytochemical and ethnopharmacological review of Elephantorrhiza goetzei (harms) harms. Asian Pacific Journal of Tropical Medicine. 2017;10(2):107-113
  33. 33. Chimponda T, Mukanganyama S. Antimycobacterial activities of selected medicinal plants from Zimbabwe against Mycobacterium aurum and Corynebacterium glutamicum. Tropical Biomedicine. 2010;27(3):595-610
  34. 34. Maroyi A. Dicoma anomala sond.: A review of its botany, ethnomedicine, phytochemistry and pharmacology. Asian Journal of Pharmaceutical and Clinical Research. 2018;11:70-77
  35. 35. Maroyi A. Lannea discolor: Its botany, ethnomedicinal uses, phytochemistry, and pharmacological properties. Asian Journal of Pharmaceutical and Clinical Research. 2018;11(10):49
  36. 36. Maroyi A. Medicinal uses, biological and chemical properties of wild grape (Lannea edulis): An indigenous fruit plant of tropical Africa. Asian Journal of Pharmaceutical and Clinical Research. 2019;12(9):16-20
  37. 37. Maroyi A. Local plant use and traditional conservation practices in Nhema communal area, Zimbabwe. International Journal of African Renaissance Studies-Multi-, Inter- and Transdisciplinarity. 2012;7(1):109-128
  38. 38. Maroyi A. Sansevieria hyacinthoides (L.) Druce: A review of its botany, medicinal uses, phytochemistry, and biological activities. Asian Journal of Pharmaceutical and Clinical Research. 2019;12(9):21-26
  39. 39. Maroyi A. Nutraceutical and ethnopharmacological properties of Vangueria infausta subsp. infausta. Molecules. 2018;23(5):1089
  40. 40. Tan A. Turkey: Country Report to the FAO International Technical Conference on Plant Genetic Resource. Leipzig, Germany; 1996. p. 46
  41. 41. Rashmi A, Gill NS, Sukhwinder K, Jain AD. Phytopharmacological evaluation of ethanolic extract of the seeds of Abrus precatorius Linn. Journal of Pharmacology and Toxicology. 2011;6(6):580-588
  42. 42. Sunday RM, Ilesanmi OR, Obuotor EM. Acute and subacute toxicity of aqueous extract of Abrus precatorius seed in Wister rats. The Internet Journal of Pharmacology. 2013;11(1):1-7
  43. 43. Ragasa CY, Lorena GS, Mandia EH, Raga DD, Shen CC. Chemical constituents of Abrus precatorius. American Journal of Essential Oils and Natural Products. 2013;1(2):7-10
  44. 44. Sheikh SG, Hedge K. Therapeutic uses of Abrus precatorius: A review. International Journal of Pharma and Chemical Research. 2017:196-201
  45. 45. Bhakta S, Das SK. The medicinal values of Abrus precatorius: A review study. Journal of Advanced Biotechnology and Experimental Therapeutics. 2020;3(2):84-91
  46. 46. Dahikar GK, Rathi B, Kamble SB. Critical review on pharmacological uses of Gunja (Abrus precatorious). Journal of Indian System of Medicine. 2020;8(3):155-161
  47. 47. Adedapo AA, Sofidiya MO, Masika PJ, Afolayan AJ. Anti-inflammatory and analgesic activities of the aqueous extract of acacia Karroo stem bark in experimental animals. Basic & Clinical Pharmacology & Toxicology. 2008;103(5):397-400
  48. 48. Nielsen TR, Kuete V, Jäger AK, Meyer JJ, Lall N. Antimicrobial activity of selected south African medicinal plants. BMC Complementary and Alternative Medicine. 2012;12:1-6
  49. 49. Njanje I, Bagla VP, Beseni BK, Mbazima V, Lebogo KW, Mampuru L, et al. Defatting of acetone leaf extract of Acacia karroo (Hayne) enhances its hypoglycaemic potential. BMC Complementary and Alternative Medicine. 2017;17(1):1-1
  50. 50. Chipiti T, Ibrahim MA, Koorbanally NA, Islam MS. In vitro antioxidant activities of leaf and root extracts of Albizia antunesiana harms. Acta Poloniae Pharmaceutica. 2013;70(6):1035-1043
  51. 51. Koné WM, Atindehou KK, Dossahoua T, Betschart B. Anthelmintic activity of medicinal plants used in northern Côte d'Ivoire against intestinal helminthiasis. Pharmaceutical Biology. 2005;43(1):72-78
  52. 52. Hassan HS, Ahmadu AA, Hassan AS. Analgesic and anti-inflammatory activities of Asparagus africanus root extract. African Journal of Traditional, Complementary and Alternative Medicines. 2008;5(1):27-31
  53. 53. Kebede S, Afework M, Debella A, Ergete W, Makonnen E. Toxicological study of the butanol fractionated root extract of Asparagus Africanus Lam., on some blood parameter and histopathology of liver and kidney in mice. BMC Research Notes. 2016;9:1-9
  54. 54. Matowa PR, Gundidza M, Gwanzura L, Nhachi CF. A survey of ethnomedicinal plants used to treat cancer by traditional medicine practitioners in Zimbabwe. BMC Complementary Medicine and Therapies. 2020;20(1):1-3
  55. 55. Toua V, Ahmadou A, Dieudonne N. In vitro effect of Burkea Africana Burke, 1840 (Fabaceae-cesalpinoideae) ethanolic bark extract on the nematode Haemonchus contortus rudolphi, 1803. Indo American Journal of Pharmaceutical Sciences. 2017;4(12):4733
  56. 56. Moura I, Duvane JA, Ribeiro N, Ribeiro-Barros I. Woody species from the Mozambican Miombo woodlands: A review on their ethnomedicinal uses and pharmacological potential. Journal of Medicinal Plants Research. 2018;12(2):15-31
  57. 57. Namadina MM, Aliyu BS, Haruna H, Sunusi U, Kamal RM, Balarabe S, et al. Pharmacognostic and acute toxicity study of Burkea Africana root. Journal of Applied Sciences and Environmental Management. 2020;24(4):565-573
  58. 58. Woode E, Ansah C, Ainooson GK, Abotsi WM, Mensah AY, Duweijua M. Anti-inflammatory and antioxidant properties of the root extract of Carissa edulis (Forsk.) Vahl (Apocynaceae). Journal of Science and Technology (Ghana). 2007;27(3):5-15
  59. 59. Harwansh RK, Garabadu D, Rahman MA, Garabadu PS. In vitro anthelmintic activity of different extracts of root of Carissa spinarum. International Journal of Pharmaceutical Sciences and Research. 2010;1(10):84
  60. 60. Ibrahim H, Williams FE, Salawu KM, Usman AM. Phytochemical screening and acute toxicity studies of crude ethanolic extract and flavonoid fraction of Carissa edulis leaves. Biokemistri. 2015;27(1):39-43
  61. 61. Osseni R, Akoha S, Adjagba M, Azonbakin S, Lagnika L, Awede B, et al. In vivo toxicological assessment of the aqueous extracts of the leaves of Carissa edulis (Apocynaceae) in Wistar rats. European Journal of Medicinal Plants. 2016;15(1):1
  62. 62. Kaunda JS, Zhang YJ. The genus Carissa: An ethnopharmacological, phytochemical and pharmacological review. Natural Products and Bioprospecting. 2017;7:181-199
  63. 63. Parry O, Matambo C. Some pharmacological actions of aloe extracts and Cassia abbreviata on rats and mice. Central African Journal of Medicine. 1992;38(10):409-414
  64. 64. Okeleye BI, Mkwetshana NT, Ndip RN. Evaluation of the antibacterial and antifungal potential of Peltophorum africanum: Toxicological effect on human chang liver cell line. The Scientific World Journal. 2013;2013:1-9
  65. 65. Mongalo NI. Peltophorum africanum Sond [Mosetlha]: A review of its ethnomedicinal uses, toxicology, phytochemistry and pharmacological activities. Journal of Medicinal Plants Research. 2013;7(48):3484-3491
  66. 66. Viol DI, Chagonda LS, Moyo SR, Mericli AH. Toxicity and antiviral activities of some medicinal plants used by traditional medical practitioners in Zimbabwe. American Journal of Plant Sciences. 2016;7(11):1538
  67. 67. Mujuru S. Flavonoid content, anti-bacterial and anti-inflammatory activity of cassia abbreviata pods [doctoral dissertation] BUSE
  68. 68. Sobeh M, Esmat A, Petruk G, Abdelfattah MA, Dmirieh M, Monti DM, et al. Phenolic compounds from Syzygium jambos (Myrtaceae) exhibit distinct antioxidant and hepatoprotective activities in vivo. Journal of Functional Foods. 2018;41:223-231
  69. 69. Conde P, Figueira R, Saraiva S, Catarino L, Romeiras M, Duarte MC. The botanic mission to Mozambique (1942-1948): Contributions to knowledge of the medicinal flora of Mozambique. História, Ciências, Saúde-Manguinhos. 2014;21:539-585
  70. 70. Saini H, Dwivedi J, Paliwal H, Kataria U, Sharma M. An ethno-pharmacological evaluation of Catunaregam spinosa (thumb.) tirveng for antioxidant activity. Journal of Drug Delivery and Therapeutics. 2019;9(4-s):280-284
  71. 71. Al-Taweel AM, Perveen S, El-Shafae AM, Fawzy GA, Malik A, Afza N, et al. Bioactive phenolic amides from Celtis Africana. Molecules. 2012;17(3):2675-2682
  72. 72. Akhlaq A, Mehmood MH, Rehman A, Ashraf Z, Syed S, Bawany SA, et al. The prokinetic, laxative, and antidiarrheal effects of Morus nigra: Possible muscarinic, Ca2+ channel blocking, and antimuscarinic mechanisms. Phytotherapy Research. 2016;30(8):1362-1376
  73. 73. Tanko Y, Yaro AH, Isa AI, Yerima M, Saleh MI, Mohammed A. Toxicological and hypoglycaemic studies on the leaves of Cissampelos mucronata (Menispermaceae) on blood glucose levels of streptozotocin-induced diabetic Wistar rats. Journal of Medicinal Plant Research: Planta Medica. 2007;1(5):113-116
  74. 74. Garba SH, Jacks TW, Onyeyili PA, Nggada HA. Testicular and andrological effects of the methanol extract of the root of Cissampelos mucronata (A. Rich) in rats. Journal of Biological Sciences and Bioconservation. 2014;6:18-30
  75. 75. Maroyi A. A synthesis and review of medicinal uses, phytochemistry and pharmacological properties of Cissampelos mucronata A. Rich.(Menispermaceae). Journal of Pharmacy and Nutrition Sciences. 2020;10:2013-2022
  76. 76. Pathak AK, Kambhoja S, Dhruv S, Singh HP, Chand H. Anthelimintic activity of Cissus quadraangularis Linn stem. Pharmacology. 2010;3:15-18
  77. 77. Buddhadev S, Buddhadev S. A review update on plant Cissus quadrangularis L. Punarnav. 2014;2:1
  78. 78. Shukla R, Pathak A, Kambuja S, Sachan S, Mishra A, Kumar S. Pharmacognostical, phytochemical and pharmacological overview: Cissus quadrangularis Linn. Indian Journal of Pharmaceutical and Biological Research. 2015;3(3):59
  79. 79. Kavitha A, Babu AN, Nadendla RR. Acute toxicity study of Cissus quadrangularis in wiss albino mice. Panacea Journal of Pharmacy and Pharmaceutical Sciences. 2018;7(1):748-756
  80. 80. McGaw LJ, Rabe T, Sparg SG, Jäger AK, Eloff JN, Van Staden J. An investigation on the biological activity of Combretum species. Journal of Ethnopharmacology. 2001;75(1):45-50
  81. 81. de Morais Lima GR, de Sales IR, Caldas Filho MR, de Jesus NZ, de Sousa FH, Barbosa-Filho JM, et al. Bioactivities of the genus Combretum (Combretaceae): A review. Molecules. 2012;17(8):9142-9206
  82. 82. Roy S, Gorai D, Acharya R, Roy R. Combretum (combretaceae): Biological activity and phytochemistry. American Journal of Pharm Research. 2014;4(11):5266-5299
  83. 83. Peloewetse E, Thebe MM, Ngila JC, Ekose GE. Inhibition of growth of some phytopathogenic and mycotoxigenic fungi by aqueous extracts of Combretum imberbe (Wawra) wood. African Journal of Biotechnology. 2008;7(16):2934-2939
  84. 84. Masoko P, Picard J, Howard RL, Mampuru LJ, Eloff JN. In vivo antifungal effect of Combretum and Terminalia species extracts on cutaneous wound healing in immunosuppressed rats. Pharmaceutical Biology. 2010;48(6):621-632
  85. 85. Mangoyi R, Mafukidze W, Marobela K, Mukanganyama S. Antifungal activities and preliminary phytochemical investigation of Combretum species from Zimbabwe. Microbial and Biochemical Technology. 2012;4:037-044
  86. 86. Ramalhet C, Lopes D, Mulhovo S, Rosário VE, Ferreira MJ. Antimalarial activity of some plants traditionally used in Mozambique. In: Workshop Plantas Medicinais e Fitoterapêuticas Nos Trópicos. IICT/CCCM 2008 Oct 29. Vol. 29. p. 30
  87. 87. Salawu OA, Chindo BA, Tijani AY, Obidike IC, Salawu TA, Akingbasote AJ. Acute and sub-acute toxicological evaluation of the methanolic stem bark extract of Crossopteryx febrifuga in rats. African Journal of Pharmacy and Pharmacology. 2009;3(12):621-626
  88. 88. Nnatuanya IN, Ohadoma SC. Pharmacological evaluation for antitrypanosomal activity of aqueous stem bark extract of Grossopteryx verbrifuga in rats. Journal of Applied Sciences. 2014;17(2):11282-11291
  89. 89. Bassoueka DJ, Taiwe Sotoing G, Nsonde Ntandou G, Ngo BE. Anticonvulsant activity of the decoction of Crossopteryx febrifuga in mice. International Journal of Sciences and Research. 2016;3:112-116
  90. 90. Idris MM, Nenge HP. Antihyperglycaemic and antilipidaemic properties of ethanol stem bark extract of Crossopteryx febrifuga in alloxan-induced diabetic rats. ChemSearch Journal. 2019;10(2):130-137
  91. 91. Uchogu AP, Yahaya TA, Salawu OA, Adamu MA, Ameh FS. Anti-proliferative potential of some common vegetables and plants in Nigeria. Journal of Pharmaceutical Development and Industrial Pharmacy. 2020;2:2
  92. 92. Grace OM, Prendergast HD, Jäger AK, Van Staden J, Van Wyk AE. Bark medicines used in traditional healthcare in KwaZulu-Natal, South Africa: An inventory. South African Journal of Botany. 2003;69(3):301-363
  93. 93. Okokon JE, Ofodum KC, Ajibesin KK, Danladi B, Gamaniel KS. Pharmacological screening and evaluation of antiplasmodial activity of croton zambesicus against plasmodium berghei berghei infection in mice. Indian Journal of Pharmacology. 2005;37(4):243
  94. 94. Okokon JE, Nwafor PA, Noah K. Nephroprotective effect of croton zambesicus root extract against gentimicin-induced kidney injury. Asian Pacific Journal of Tropical Medicine. 2011;4(12):969-972
  95. 95. Salatino A, Salatino ML, Negri G. Traditional uses, chemistry and pharmacology of croton species (Euphorbiaceae). Journal of the Brazilian Chemical Society. 2007;18:11-33
  96. 96. Okokon JE, Dar A, Choudhary MI. Immunomodulatory, cytotoxic and antileishmanial activity of phytoconstituents of croton zambesicus. Phytopharmacology Journal. 2013;4(1):31-40
  97. 97. Mfotie Njoya E, Eloff JN, McGaw LJ. Croton gratissimus leaf extracts inhibit cancer cell growth by inducing caspase 3/7 activation with additional anti-inflammatory and antioxidant activities. BMC Complementary and Alternative Medicine. 2018;18(1):1-1
  98. 98. Mahmoud AB, Danton O, Kaiser M, Khalid S, Hamburger M, Mäser P. HPLC-based activity profiling for antiprotozoal compounds in Croton gratissimus and Cuscuta hyalina. Frontiers in Pharmacology. 2020;11:1246
  99. 99. Safari VZ, Ngugi MP, Orinda J, Njagi EM. Antipyretic, anti-inflammatory and analgesic activities of aqueous stem extract of Cynachum viminale (L.) in albino mice. Medicinal and Aromatic Plants. 2016;5(236):2167-0412
  100. 100. Munodawafa T, Moyo S, Chipurura B, Chagonda L. Brine shrimp lethality bioassay of some selected Zimbabwean traditional medicinal plants. International Journal of Phytopharmacology. 2016;7(4):229-232
  101. 101. Clarkson C, Maharaj VJ, Crouch NR, Grace OM, Pillay P, Matsabisa MG, et al. In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. Journal of Ethnopharmacology. 2004;92(2-3):177-191
  102. 102. Mulyangote LT. Ethnobotany and bioactivity of medicinal plants used to treat symptoms associated with gastro-intestinal infections in Namibia [doctoral dissertation] University of Namibia
  103. 103. Mokoka TA. The discovery and characterization of antiprotozoal compounds from South African medicinal plants by a HPLC-based activity profiling technique [doctoral dissertation]
  104. 104. Mmbengwa V, Samie A, Gundidza M, Matikiti V, Ramalivhana NJ, Magwa ML. Biological activity and phytoconstituents of essential oil from fresh leaves of Eriosema englerianum. African Journal of Biotechnology. 2009;8(3):361-364
  105. 105. Lawal OA, Ogunwande IA. Essential oils from the medicinal plants of Africa. In: Medicinal Plant Research in Africa. Nigeria: Elsevier; 2013. pp. 203-224
  106. 106. Bunalema L, Kirimuhuzya C, Tabuti JR, Waako P, Magadula JJ, Otieno N, et al. The efficacy of the crude root bark extracts of Erythrina abyssinica on rifampicin resistant mycobacterium tuberculosis. African Health Sciences. 2011;11(4):587-593
  107. 107. Lagu C, Kayanja FI. The in vitro antihelminthic efficacy of erythrina abyssinica extracts on Ascaridia galli. In: Insights from Veterinary Medicine. London: IntechOpen; 2013. pp. 269-281
  108. 108. Chitopoa W, Muchachaa I, Mangoyi R. Evaluation of the antimicrobial activity of Erythrina abyssinica leaf extract. Journal of Microbial & Biochemical Technology. 2019;11(2):43-46
  109. 109. Macharia FK, Mwangi PW, Yenesew A, Bukachi F, Nyaga NM, Wafula DK. Hepatoprotective effects of erythrina abyssinica lam ex dc against non alcoholic fatty liver disease in Sprague dawley rats. BioRxiv. 2019:577007
  110. 110. McGaw LJ, Jäger AK, Van Staden J. Antibacterial, anthelmintic and anti-amoebic activity in South African medicinal plants. Journal of Ethnopharmacology. 2000;72(1-2):247-263
  111. 111. Kama-Kama F, Midiwo J, Nganga J, Maina N, Schiek E, Omosa LK, et al. Selected ethno-medicinal plants from Kenya with in vitro activity against major African livestock pathogens belonging to the “mycoplasma mycoides cluster”. Journal of Ethnopharmacology. 2016;192:524-534
  112. 112. Woldemedhin B, Nedi T, Shibeshi W, Sisay M. Evaluation of the diuretic activity of the aqueous and 80% methanol extracts of the root of Euclea divinorum Hiern (Ebenaceae) in Sprague Dawley rats. Journal of Ethnopharmacology. 2017;202:114-121
  113. 113. Al-Fatimi M. Antifungal activity of Euclea divinorum root and study of its ethnobotany and phytopharmacology. PRO. 2019;7(10):680
  114. 114. Mangoyi R, Mukanganyama S. In vitro antifungal activities of selected medicinal plants from Zimbabwe against Candida albicans and Candida krusei. The African Journal of Plant Science and Biotechnology. 2011;5(1):1-7
  115. 115. Kota GC, Karthikeyan M, Kannan M. Flacourtia indica (Burm. f.) Merr.-A phytopharmacological review. International Journal of Research in Pharmaceutical and Biomedical Sciences. 2012;3(1):78-81
  116. 116. Obbo CJ, Makanga B, Mulholland DA, Coombes PH, Brun R. Antiprotozoal activity of Khaya anthotheca, (Welv.) CDC a plant used by chimpanzees for self-medication. Journal of Ethnopharmacology. 2013;147(1):220-223
  117. 117. Sashidhara KV, Singh SP, Singh SV, Srivastava RK, Srivastava K, Saxena JK, et al. Isolation and identification of β-hematin inhibitors from Flacourtia indica as promising antiplasmodial agents. European Journal of Medicinal Chemistry. 2013;60:497-502
  118. 118. Hussain SM, Hussain MS, Ahmed A, Arif N. Characterization of isolated bioactive phytoconstituents from Flacourtia indica as potential phytopharmaceuticals-an in silico perspective. Journal of Pharmacognosy and Phytochemistry. 2016;5(6):323-331
  119. 119. Taderera T, Chagonda LS, Gomo E, Shai LJ. Inhibitory activity of α-glucosidase and α-amylase by Annona stenophylla root extract as mechanism for hypoglycaemic control of DM. International Journal of Pharmacy, Photon. 2015;106:436-444
  120. 120. Khalid SA, Friedrichsen GM, Christensen SB, El Tahir A, Satti GM. Isolation and characterization of pristimerin as the antiplasmodial and antileishmanial agent of Maytenus senegalensis (Lam.) Exell. Archive for Organic Chemistry. 2007;2007(9):129-134
  121. 121. Malebo HM, Wiketye V, Katani SJ, Kitufe NA, Nyigo VA, Imeda CP, et al. In vivo antiplasmodial and toxicological effect of maytenus senegalensis traditionally used in the treatment of malaria in Tanzania. Malaria Journal. 2015;14:1-7
  122. 122. Makgatho ME, Nxumalo W, Raphoko LA. Anti-mycobacterial,-oxidative,-proliferative and-inflammatory activities of dichloromethane leaf extracts of Gymnosporia senegalensis (Lam.) Loes. South African Journal of Botany. 2018;114:217-222
  123. 123. Lee SE, Kim MR, Kim JH, Takeoka GR, Kim TW, Park BS. Antimalarial activity of anthothecol derived from Khaya anthotheca (Meliaceae). Phytomedicine. 2008;15(6–7):533-535
  124. 124. Suleiman MM, Bagla V, Naidoo V, Eloff JN. Evaluation of selected South African plant species for antioxidant, antiplatelet, and cytotoxic activity. Pharmaceutical Biology. 2010;48(6):643-650
  125. 125. Saadabi AM, Ayoub SM. Comparative bioactivity of Hydnora abyssinica A. Braun against different groups of fungi and bacteria. Journal of Medicinal Plants Research. 2009:3(4):262-265
  126. 126. Osman HM. Anti-diarrhoeal activity of hydnora abyssinica aqueous root extract in rats [doctoral dissertation] Department of Preventive Medicine and Veterinary Public Health, Faculty of Veterinary Medicine, University of Khartoum
  127. 127. Yagi S, Drouart N, Bourgaud F, Henry M, Chapleur Y, Laurain-Mattar D. Antioxidant and antiglycation properties of Hydnora johannis roots. South African Journal of Botany. 2013;84:124-127
  128. 128. Al-Fatimi M, Ali NA, Kilian N, Franke K, Arnold N, Kuhnt C, et al. Ethnobotany, chemical constituents and biological activities of the flowers of Hydnora abyssinica A. Br.(Hydnoraceae). Die Pharmazie-An International Journal of Pharmaceutical Sciences. 2016;71(4):222-226
  129. 129. Moideen SV, Houghton PJ, Rock P, Croft SL, Aboagye-Nyame F. Activity of extracts and naphthoquinones from Kigelia pinnata against Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense. Planta Medica. 1999;65(06):536-540
  130. 130. Sharma UK, Sharma US, Singh A, Agarwal VI. Diuretic activity of Kigelia pinnata bark extract. Journal of Pharmacology Research. 2010;1(2):17-20
  131. 131. Atawodi SE, Olowoniyi OD. Pharmacological and therapeutic activities of Kigelia Africana (Lam.) Benth. Annual Research & Review in Biology. 2015;5:1-7
  132. 132. Chakuma N, Chipurura B, Muchuweti M, Chitindingu K, Bhebhe M, Chagonda L. Total phenolic content, free radical scavenging and antioxidant potential of Lannea discolor (Sond.) Engl bark and root extracts. Journal of Biologically Active Products from Nature. 2015;5(1):71-77
  133. 133. Aremu AO, Cheesman L, Finnie JF, Van Staden J. Mondia whitei (Apocynaceae): A review of its biological activities, conservation strategies and economic potential. South African Journal of Botany. 2011;77(4):960-971
  134. 134. Gakunga NJ, Sembajwe LF, John K, Patrick V. Phytochemical screening and antidiarrheal activity of ethanolic fresh root bark extract of Mondia whitei in albino rats. Journal of Pharmaceutical and Scientific Innovation. 2013;2(6):1-6
  135. 135. Oketch-Rabah HA. Mondia whitei, a medicinal plant from Africa with aphrodisiac and antidepressant properties: A review. Journal of Dietary Supplements. 2012;9(4):272-284
  136. 136. Joseph O, Kihdze TJ, Katusiime B, Imanirampa L,Waako P, Bajunirwe F, Ganafa AA. Toxicity of four herbs used in erectile dysfunction; Mondia whiteii, Cola acuminata, Urtica massaica, and Tarenna graveolensin male rats. African Journal of Pharmacy and Phamacology. 2015;9(30):756-763
  137. 137. Imam MZ, Akter S. Musa paradisiaca L. and Musa sapientum L.: A phytochemical and pharmacological review. Journal of Applied Pharmaceutical Science. 2011;30:14-20
  138. 138. Pereira A, Maraschin M. Banana (Musa spp) from peel to pulp: Ethnopharmacology, source of bioactive compounds and its relevance for human health. Journal of Ethnopharmacology. 2015;160:149-163
  139. 139. Neuwirt N, Gregory L, Yoshihara E, Gorniak SL. Effect of Musa spp. extract on eggs and larvae of gastrointestinal nematodes from infected sheep. Semina: Agricultural Sciences. 2015;36(6):3751-3756
  140. 140. Gregory L, Yoshihara E, Ribeiro BL, Silva LK, Marques EC, Meira EB, et al. Dried, ground banana plant leaves (Musa spp.) for the control of Haemonchus contortus and Trichostrongylus colubriformis infections in sheep. Parasitology Research. 2015;114:4545-4551
  141. 141. Ugbogu EA, Ude VC, Elekwa I, Arunsi UO, Uche-Ikonne C, Nwakanma C. Toxicological profile of the aqueous-fermented extract of musa paradisiaca in rats. Avicenna Journal of Phytomedicine. 2018;8(6):478
  142. 142. Moshi MJ, Cosam JC, Mbwambo ZH, Kapingu M, Nkunya MH. Testing beyond ethnomedical claims: Brine shrimp lethality of some Tanzanian plants. Pharmaceutical Biology. 2004;42(7):547-551
  143. 143. Nyaberi MO, Onyango CA, Mathooko FM, Maina JM, Makobe M, Mwaura F. Bioactive fractions in the stem charcoal of Ozoroa insignis used by the pastoral communities in West Pokot to preserve milk. Journal of Applied Biosciences. 2010;26:1653-1658
  144. 144. Haule EE, Moshi MJ, Nondo RS, Mwangomo DT, Mahunnah RL. A study of antimicrobial activity, acute toxicity and cytoprotective effect of a polyherbal extract in a rat ethanol-HCl gastric ulcer model. BMC Research Notes. 2012;5:1-9
  145. 145. Nyaberi MO. Studies on the use of herbs to preserve meat and milk among the pastoral communities of West Pokot in Kenya [doctoral dissertation]
  146. 146. Obiro WC, Zhang T, Jiang B. The nutraceutical role of the Phaseolus vulgaris α-amylase inhibitor. British Journal of Nutrition. 2008;100(1):1-2
  147. 147. Ríos-de Álvarez L, Jackson F, Greer AW, Grant G, Jackson E, Morrison AA, et al. Direct anthelmintic and immunostimulatory effects of oral dosing semi-purified phytohaemagglutinin lectin in sheep infected with Teladorsagia circumcincta and Trichostrongylus colubriformis. Veterinary Parasitology. 2012;187(1–2):267-274
  148. 148. Saleem ZM, Ahmed S, Hasan MM. Phaseolus lunatus Linn: Botany, medicinal uses, phytochemistry and pharmacology. World Journal of Pharmacy and Pharmaceutical Sciences. 2016;5(11):87-93
  149. 149. Ganesan K, Xu B. Polyphenol-rich dry common beans (Phaseolus vulgaris L.) and their health benefits. International Journal of Molecular Sciences. 2017;18(11):2331
  150. 150. Jawaid T, Kamal M, Kumar S. Antihypertensive effect of the alcoholic extract of seeds of Phaseolus vulgaris Linn.(Fabaceae) on high salt diet induced hypertension in male rats. International Journal of Pharmaceutical Sciences and Research. 2017;8(7):3092-3097
  151. 151. Ramadhani UP, Chandra B, Rivai H. Overview of phytochemistry and pharmacology of chickpeas (Phaseolus vulgaris). World Journal of Pharmacy and Pharmaceutical Sciences. 2020;9(9):442-461
  152. 152. Kone WM, Atindehou KK, Kacou-N A, Dosso M. Evaluation of 17 medicinal plants from northern Côte d'Ivoire for their in vitro activity against Streptococcus pneumoniae. African Journal of Traditional, Complementary and Alternative Medicines. 2007;4(1):17-22
  153. 153. Ukwuani A, Ihebunna O, Samuel RM, Peni IJ. Acute oral toxicity and antiulcer activity of Piliostigma thonningii leaf fraction in albino rats. Bulletin of Environment, Pharmacology and Life Sciences. 2012;2:41-45
  154. 154. Afolayan M, Srivedavyasasri R, Asekun OT, Familoni OB, Orishadipe A, Zulfiqar F, et al. Phytochemical study of Piliostigma thonningii, a medicinal plant grown in Nigeria. Medicinal Chemistry Research. 2018;27:2325-2330
  155. 155. Chipinga JV. Efficacy of Pterocarpus angolensis crude extracts against Candida krusei, Staphylococcus aureus, Streptococcus agalactiae and Escherichia coli. Malawi Medical Journal. 2018;30(4):219-224
  156. 156. Sigidi MT, Anokwuru CP, Zininga T, Tshisikhawe MP, Shonhai A, Ramaite ID, et al. Comparative in vitro cytotoxic, anti-inflammatory and anti-microbiological activities of two indigenous Venda medicinal plants. Translational Medicine Communications. 2016;1:1-7
  157. 157. Zininga T, Anokwuru CP, Sigidi MT, Tshisikhawe MP, Ramaite II, Traoré AN, et al. Extracts obtained from Pterocarpus angolensis DC and Ziziphus mucronata exhibit antiplasmodial activity and inhibit heat shock protein 70 (Hsp70) function. Molecules. 2017;22(8):1224
  158. 158. Sadashiv PS. Acute toxicity study for Ricinus communis. Der Pharmacia Lettre. 2011;3(5):132-137
  159. 159. Franke H, Scholl R, Aigner A. Ricin and Ricinus communis in pharmacology and toxicology-from ancient use and “papyrus Ebers” to modern perspectives and “poisonous plant of the year 2018”. Naunyn-Schmiedeberg's Archives of Pharmacology. 2019;392:1181-1208
  160. 160. Khan, Marwat S, Khan EA, Baloch MS, Sadiq M, Ullah I, Javaria S, et al. Ricinus cmmunis: Ethnomedicinal uses and pharmacological activities. Pakistan Journal of Pharmaceutical Sciences. 2017;30(5):1815-1827
  161. 161. Fomum WS, Nsahlai VI. In vitro evaluation of anthelmintic efficacy of some plant species possessing proteinases and/or other nitroge-nous compounds in small ruminants. Journal of Alternative Complementary & Integrative Medicine. 2017;3:038
  162. 162. Aliero AA, Jimoh FO, Afolayan AJ. Antioxidant and antibacterial properties of Sansevieria hyacinthoides. International Journal of Pure and Applied Sciences. 2008;2(3):103
  163. 163. Sultana N, Rahman MM, Ahmed S, Akter S, Haque MM, Parveen S, et al. Antimicrobial compounds from the Rihzomes of Sansevieria hyacinthoides. Bangladesh Journal of Scientific and Industrial Research. 2011;46(3):329-332
  164. 164. Akhalwaya S, Van Vuuren S, Patel M. An in vitro investigation of indigenous south African medicinal plants used to treat oral infections. Journal of Ethnopharmacology. 2018;210:359-371
  165. 165. Ojewole JA, Mawoza T, Chiwororo WD, Owira PM. Sclerocarya birrea (A. Rich) Hochst. [‘Marula’] (Anacardiaceae): A review of its phytochemistry, pharmacology and toxicology and its ethnomedicinal uses. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2010;24(5):633-639
  166. 166. Auwal SM, Atiku MK, Wudil AM, Sule MS. Phytochemical composition and acute toxicity evaluation of aqueous root bark extract of Securidaca longipedunculata (Linn). Bayero Journal of Pure and Applied Sciences. 2012;5(2):67-72
  167. 167. Jain SC, Jain R, Sharma RA, Capasso F. Pharmacological investigation of Cassia italica. Journal of Ethnopharmacology. 1997;58(2):135-142
  168. 168. Ahangarpour A, Oroujan AA. The effects of Cassia italica leaves aqueous extract on non-pregnant uterus contraction in rats. Iranian Journal of Reproductive Medicine. 2010;8(4):179-184
  169. 169. Qamar F, Afroz S, Feroz Z, Siddiqui S, Ara A. Evaluation of hypoglycemic effect of Cassia italica. Journal of Basic & Applied Sciences. 2011;7(1)
  170. 170. Dabai YU, Kawo AH, Aliyu RM. Phytochemical screening and antibacterial activity of the leaf and root extracts of Senna italica. African Journal of Pharmacy and Pharmacology. 2012;6(12):914-918
  171. 171. Chitra A, Senthilkumar N, Ashraf AM. Antioxidant and antitumor activities on catunaregumspinosa. International Journal of Research in Pharmacology & Pharmacotherapeutics. 2013;2:464-470
  172. 172. Nadro MS, Onoagbe IO. Effects of the aqueous and ethanolic extracts of Cassia italica leaf in normal rats. American Journal of Research Communication. 2014;2(8):72-80
  173. 173. Bayala B, Zohoncon TM, Djigma FW, Nadembega C, Baron S, Lobaccaro JM, et al. Antioxidant and antiproliferative activities on prostate and cervical cultured cancer cells of five medicinal plant extracts from Burkina Faso. International Journal of Biological and Chemical Sciences. 2020;14(3):652-663
  174. 174. Mahmuda A, Sani M, Adamu T, Sanda A, Gobir LG. In vivo anthelminthic activity of Ethanolic leaf extract of Senna italica on rats with Hymenolepis diminuta infection. Advances in Research. 2020;21(8):18-27
  175. 175. Yongwa G, Ngnoda BF, Ndjonka D, Saotoing P. In vitro anthelmintic activity of aqueous and ethanolic extract of Senna italica (Caesalpiniaceae) on three-stages of Haemonchus contortus. Journal of Pharmaceutical Research International. 2020;32(3):25-34
  176. 176. Tshikalange TE, Meyer JJ, Hussein AA. Antimicrobial activity, toxicity and the isolation of a bioactive compound from plants used to treat sexually transmitted diseases. Journal of Ethnopharmacology. 2005;96(3):515-519
  177. 177. Aremu AO, Ndhlala AR, Fawole OA, Light ME, Finnie JF, Van Staden J. In vitro pharmacological evaluation and phenolic content of ten south African medicinal plants used as anthelmintics. South African Journal of Botany. 2010;76(3):558-566
  178. 178. Umar AB. Phytochemical evaluation, toxicity study and graded dose response of the methanol crude extract of Cassia singueana (del.) on experimental animals. International Journal of Academic Research. 2019;1(4):36-50
  179. 179. Adzu B, Abbah J, Vongtau H, Gamaniel K. Studies on the use of Cassia singueana in malaria ethnopharmacy. Journal of Ethnopharmacology. 2003;88(2-3):261-267
  180. 180. Mandal K, Dobhal Y, Joshi BC. An updated review on Solanum viarum Dunal. Recent Trends in Pharmaceutical Sciences and Research. 2019;2:1-6
  181. 181. Indhumathi T, Mohandass S. Efficacy of ethanolic extract of Solanum incanum fruit extract for its antimicrobial activity. International Journal of Current Microbiology and Applied sciences. 2014;3(6):939-949
  182. 182. Mwonjoria JK, Ngeranwa JJ, Githinji CG, Kahiga T, Kariuki HN, Waweru FN. Suppression of nociception by Solanum incanum (Lin.) Diclomethane root extract is associated anti-inflammatory activity. Suppression of nociception by Solanum incanum (Lin.) The Journal of Phytopharmacology. 2014;3(3):156-162
  183. 183. Dakone D, Guadie A. A review on ethnomedicinal use, nutritional value, phytochemistry and pharmacological characteristics of Solanum incanum L. An important medicinal plant. International Journal of Scientific and Technology Research. 2016;5(6):350-354
  184. 184. Anwar S. Pharmacological investigation of solanum incanum against P. Falciparum, L. infantum, T. Cruzi and T. Brucei: A role of antioxidant effect and clinical overview. Biomedical and Pharmacology Journal. 2018;11(2):653-660
  185. 185. Wang RW, Rebhun LI, Kupchan SM. Antimitotic and antitubulin activity of the tumor inhibitor steganacin. Cancer Research. 1977;37(9):3071-3079
  186. 186. Demoz MS, Gachoki KP, Mungai KJ, Negusse BG. GC-MS analysis of the essential oil and methanol extract of the seeds of steganotaenia araliacea hochst. American Journal of Plant Sciences. 2014;5(26):3752
  187. 187. Mailu JK, Nguta JM, Mbaria JM, Okumu MO. Medicinal plants used in managing diseases of the respiratory system among the Luo community: An appraisal of Kisumu East Sub-County, Kenya. Chinese Medicine. 2020;15:1-27
  188. 188. Sunghwa F, Koketsu M. Phenolic and bis-iridoid glycosides from Strychnos cocculoides. Natural Product Research. 2009;23(15):1408-1415
  189. 189. Ngadze RT, Verkerk R, Nyanga LK, Fogliano V, Ferracane R, Troise AD, et al. Effect of heat and pectinase maceration on phenolic compounds and physicochemical quality of Strychnos cocculoides juice. PLoS One. 2018;13(8):e0202415
  190. 190. Moshi MJ, Mbwambo ZH. Some pharmacological properties of extracts of Terminalia sericea roots. Journal of Ethnopharmacology. 2005;97(1):43-47
  191. 191. Lembede BW. Effect of dietary Terminalia sericea aqueous leaf extracts on high-fructose diet fed growing Wistar rats [doctoral dissertation] University of Witwatersrand
  192. 192. Mongalo NI, McGaw LJ, Segapelo TV, Finnie JF, Van Staden J. Ethnobotany, phytochemistry, toxicology and pharmacological properties of Terminalia sericea Burch. Ex DC.(Combretaceae)–A review. Journal of Ethnopharmacology. 2016;194:789-802
  193. 193. Parkar H. Wound healing potential of Terminalia sericea [doctoral dissertation] University of Pretoria
  194. 194. Beigi M, Haghani E, Alizadeh A, Samani ZN. The pharmacological properties of several species of Terminalia in the world. International Journal of Pharmaceutical Sciences and Research. 2018;9(10):4079-4088
  195. 195. Nair AA, Anjum N, Tripathi YC. A review on ethnomedicinal, phytochemical, and pharmacological significance of Terminalia sericea Burch. Ex DC. Journal of Pharmacy Research. 2018;12(3):420
  196. 196. Sobeh M, Mahmoud MF, Hasan RA, Abdelfattah MA, Osman S, Rashid HO, et al. Chemical composition, antioxidant and hepatoprotective activities of methanol extracts from leaves of Terminalia bellirica and Terminalia sericea (Combretaceae). PeerJ. 2019;7:e6322
  197. 197. Masoko P, Eloff JN. Screening of twenty-four south African Combretum and six Terminalia species (Combretaceae) for antioxidant activities. African Journal of Traditional, Complementary and Alternative Medicines. 2007;4(2):231-239
  198. 198. Liu M, Katerere DR, Gray AI, Seidel V. Phytochemical and antifungal studies on Terminalia mollis and Terminalia brachystemma. Fitoterapia. 2009;80(6):369-373
  199. 199. Rajkumar M, Chandra R, Asres K, Veeresham C. Toddalia asiatica (Linn.) Lam.-A comprehensive review. Pharmacognosy Reviews. 2008;2(4):386
  200. 200. Madhava MS, Srivastava S, Sharma S. Ethnomedicinal plants used by the villagers of district Udham Singh Nagar, Uttarakhand, India. International Journal of Medicinal and Aromatic Plants. 2012;2(3):417-421
  201. 201. Orwa JA, Ngeny L, Mwikwabe NM, Ondicho J, Jondiko IJ. Antimalarial and safety evaluation of extracts from Toddalia asiatica (L). Lam.(Rutaceae). Journal of Ethnopharmacology. 2013;145(2):587-590
  202. 202. Nattudurai G, Gopinath R, Kavimani S, Jayakumararaj R. Antimicrobial activity of Toddalia asiatica against some human pathogens. International Journal of Pharmacy and Pharmaceutical Sciences. 2014;6(3):378-381
  203. 203. Shan XF, Kang YH, Bian Y, Gao YH, Wang WL, Qian AD. Isolation of active compounds from methanol extracts of Toddalia asiatica against Ichthyophthirius multifiliis in goldfish (Carassius auratus). Veterinary Parasitology. 2014;199(3-4):250-254
  204. 204. Kimang’a A, Gikunju J, Kariuki D, Ogutu M. Safety and analgesic properties of ethanolic extracts of Toddalia Asiatica (L) Lam.(Rutaceae) used for central and peripheral pain management among the east African ethnic communities. Ethiopian Journal of Health Sciences. 2016;26(1):55-66
  205. 205. Zhu Y, Chen Y, Yao X, Zhang X, Yang F, Fang X. Chemical constituents from Toddalia asiatica. Natural Product Research & Development. 2019;31(2):225-230
  206. 206. Omara T. Plants used in antivenom therapy in rural Kenya: Ethnobotany and future perspectives. Journal of Toxicology. 2020;2020:1-9
  207. 207. Germanò MP, D’Angelo V, Biasini T, Sanogo R, De Pasquale R, Catania S. Evaluation of the antioxidant properties and bioavailability of free and bound phenolic acids from Trichilia emetica Vahl. Journal of Ethnopharmacology. 2006;105(3):368-373
  208. 208. Komane BM, Olivier EI, Viljoen AM. Trichilia emetica (Meliaceae)–A review of traditional uses, biological activities and phytochemistry. Phytochemistry Letters. 2011;4(1):1-9
  209. 209. Prisca DA, Félix YH, Gnahoué Kouadio AE, David NJ, Joseph DA. Phytochemical and Acute Toxicity Study of Trichilia Emetica (Meliaceaes) bark of trunk Extract in Albinos Rats. American Journal of Bio-pharmacology Biochemistry and Life Sciences. 2015;4(1):1-8
  210. 210. Konaté K, Yomalan K, Sytar O, Zerbo P, Brestic M, Patrick VD, et al. Free radicals scavenging capacity, antidiabetic and antihypertensive activities of flavonoid-rich fractions from leaves of Trichilia emetica and Opilia amentacea in an animal model of type 2 diabetes mellitus. Evidence-Based Complementary and Alternative Medicine. 2014;2014:1-13
  211. 211. Konaté K, Yomalan K, Sytar O, Brestic M. Antidiarrheal and antimicrobial profiles extracts of the leaves from Trichilia emetica Vahl.(Meliaceae). Asian Pacific Journal of Tropical Biomedicine. 2015;5(3):242-248
  212. 212. Rukayyah SS, Jigam AA, Aisha MT. In vivo antiplasmodial and effects of subchronic administration of Trichilia emetica leaves extracts. International Journal of Natural Sciences Research. 2015;3(2):1-5
  213. 213. Lindsey K, Jäger AK, Raidoo DM, van Staden J. Screening of plants used by southern African traditional healers in the treatment of dysmenorrhoea for prostaglandin-synthesis inhibitors and uterine relaxing activity. Journal of Ethnopharmacology. 1998;64(1):9-14
  214. 214. de Boer HJ, Kool A, Broberg A, Mziray WR, Hedberg I, Levenfors JJ. Anti-fungal and anti-bacterial activity of some herbal remedies from Tanzania. Journal of Ethnopharmacology. 2005;96(3):461-469
  215. 215. Mbukwa E, Chacha M, Majinda RR. Phytochemical constituents of Vangueria infausta: Their radical scavenging and antimicrobial activities. ARKIVOC. 2007;9:104-112
  216. 216. Bapela MJ, Kaiser M, Meyer JJ. Antileishmanial activity of selected South African plant species. South African Journal of Botany. 2017;108:342-345
  217. 217. Gwatidzo L, Chowe L, Musekiwa C, Mukaratirwa-Muchanyereyi N. In vitro anti-inflammatory activity of Vangueria infausta: An edible wild fruit from Zimbabwe. African Journal of Pharmacy and Pharmacology. 2018;12(13):168-175
  218. 218. Alara OR, Abdurahman NH, Mudalip SK, Olalere OA. Phytochemical and pharmacological properties of Vernonia amygdalina: A review. Journal of Chemical Engineering and Industrial Biotechnology. 2017;2(1):80-96
  219. 219. Tijjani MA, Mohammed GT, Alkali YT, Adamu TB, Abdurahaman FI. Phytochemical analysis, analgesic and antipyretic properties of ethanolic leaf extract of Vernonia amygdalina Del. Journal of Herbmed Pharmacology. 2017;6(3):95-99
  220. 220. Danladi S, Hassan MA, Masa'ud IA, Ibrahim UI. Vernonia amygdalina Del: A mini review. Research Journal of Pharmacy and Technology. 2018;11(9):4187-4190
  221. 221. Kapravelou G, Martínez R, Andrade AM, Lopez Chaves C, López-Jurado M, Aranda P, et al. Improvement of the antioxidant and hypolipidaemic effects of cowpea flours (Vigna unguiculata) by fermentation: Results of in vitro and in vivo experiments. Journal of the Science of Food and Agriculture. 2015;95(6):1207-1216
  222. 222. Sayeed VK, Satish S, Kumar A, Hegde K. Pharmacological activities of Vigna unguiculata (L) Walp: A review. International Journal of Pharma and Chemical Research. 2017;3(1):44-49
  223. 223. Akinpelu LA, Adegbuyi TA, Agboola SS, Olaonipekun JK, Olawuni IJ, Adegoke AM, et al. Antidepressant activity and mechanism of aqueous extract of vigna unguiculata ssp. Dekindtiana (L.) walp dried aerial part in mice. International Journal of Neuroscience and Behavioral Science. 2017;5(1):7-18
  224. 224. Abdoulaye T, Constant AA, Faustin KA, Claude KA, Etienne EK, Alette ZE, et al. Antibacterial activity and acute toxicity studies of culinary leaves from Corchorus olitorius L., Vigna unguiculata L. Walp and Hibiscus sabdariffa L. used in the north of cote d'Ivoire. Research Journal of Pharmaceutical Biological and Chemical Sciences. 2018;9(5):485-494
  225. 225. Zaheer M, Ahmed S, Hassan MM. Vigna unguiculata (L.) Walp. (Papilionaceae): A review of medicinal uses, Phytochemistry and pharmacology. Journal of Pharmacognosy and Phytochemistry. 2020;9(1):1149-1152
  226. 226. Maroyi A. Ximenia caffra Sond. (Ximeniaceae) in sub-Saharan Africa: A synthesis and review of its medicinal potential. Journal of Ethnopharmacology. 2016;184:81-100
  227. 227. Mulaudzi RB, Ndhlala AR, Kulkarni MG, Finnie JF, Van Staden J. Antimicrobial properties and phenolic contents of medicinal plants used by the Venda people for conditions related to venereal diseases. Journal of Ethnopharmacology. 2011;135(2):330-337
  228. 228. Mboweni HF. Antimicrobial, cytotoxic and prelimenary phytochemical analysis of four medicinal plants and their formulation [doctoral dissertation]
  229. 229. Nair JJ, Mulaudzi RB, Chukwujekwu JC, Van Heerden FR, Van Staden J. Antigonococcal activity of Ximenia caffra Sond.(Olacaceae) and identification of the active principle. South African Journal of Botany. 2013;86:111-115
  230. 230. Olila D, Opuda-Asibo J. Antibacterial and antifungal activities of extracts of Zanthoxylum chalybeum and Warburgia ugandensis, Ugandan medicinal plants. African Health Sciences. 2001;1(2):66-72
  231. 231. Nalule AS, Mbaria JM, Kimenju JW. In vitro anthelmintic potential and phytochemical composition of ethanolic and aqueous crude extracts of Zanthoxylum chalybeum Engl
  232. 232. Bbosa GS, Mwebaza N, Lubega A, Musisi N, Kyegombe DB, Ntale M. Antiplasmodial activity of leaf extracts of Zanthoxylum chalybeum Engl. British Journal of Pharmaceutical Research. 2014;4(6):705
  233. 233. Ngugi DN. Study of antiplasmodial activity, cytotoxicity and acute toxicity of Zanthoxylum chalybeum ENGL, and Vernonia lasiopus o. Hoffman [doctoral dissertation], University of Nairobi; 2014
  234. 234. Agwaya M, Nandutu A, Vuzi P. Protective effects of Zanthoxylum chalybeum in diabetes-induced myocardial dysfunction in rats. European Journal of Medicinal Plants. 2016;12(1):1
  235. 235. Nantongo JS, Odoi JB, Abigaba G, Gwali S. Variability of phenolic and alkaloid content in different plant parts of Carissa edulis Vahl and Zanthoxylum chalybeum Engl. BMC Research Notes. 2018;11(1):1-5
  236. 236. Waterman C, Smith RA, Pontiggia L, DerMarderosian A. Anthelmintic screening of sub-Saharan African plants used in traditional medicine. Journal of Ethnopharmacology. 2010;127(3):755-759
  237. 237. Mongalo NI, Mashele SS, Makhafola TJ. Ziziphus mucronata Willd. (Rhamnaceae): It's botany, toxicity, phytochemistry and pharmacological activities. Heliyon. 2020;6(4):1-20
  238. 238. Koenen EV. Medicinal, Poisonous and Edible Plants in Namibia. Namibia: Klaus Hess Verlag; 1996
  239. 239. Mutsaka-Makuvaza MJ, Matsena-Zingoni Z, Katsidzira A, Tshuma C, Chin’ombe N, Zhou XN, et al. Urogenital schistosomiasis and risk factors of infection in mothers and preschool children in an endemic district in Zimbabwe. Parasites & Vectors. 2019;12:1-5
  240. 240. Silva C, Vareda J, Sousa A, Perestrelo R. Forensic attribution profiling of food using liquid chromatography–Mass spectrometry. In: Food Toxicology and Forensics. Portugal: Elsevier Academic Press; 2021. pp. 97-121
  241. 241. Kumari R, Kotecha M. A review on the standardization of herbal medicines. International Journal of Pharma Sciences and Research. 2016;7(2):97-106
  242. 242. Erhabor JO, Komakech R, Kang Y, Tang M, Matsabisa MG. Ethnopharmacological importance and medical applications of Myrothamnus flabellifolius Welw. (Myrothamnaceae)-A review. Journal of Ethnopharmacology. 2020;252:112576
  243. 243. Bussmann RW, Malca G, Glenn A, Sharon D, Nilsen B, Parris B, et al. Toxicity of medicinal plants used in traditional medicine in Northern Peru. Journal of Ethnopharmacology. 2011;137(1):121-140

Written By

Elliot Nyagumbo, Trust Nyirenda, Cephas Mawere, Ian Mutasa, Emmanuel Kademeteme, Alfred M. Mutaramutswa, Donald Kapanga, Godwins Ngorima, Leroy Nhari, Fabian Maunganidze, Michael Bhebhe, William Pote and Lucy Mabaya

Submitted: 05 September 2023 Reviewed: 26 September 2023 Published: 29 December 2023