Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Kidney complications of parasitic diseases

Abstract

Parasitic agents have been known to cause human disease since ancient times and are endemic in tropical and subtropical regions. Complications of parasitic diseases, including kidney involvement, are associated with worse outcomes. Chagas disease, filariasis, leishmaniasis, malaria and schistosomiasis are important parasitic diseases that can damage the kidney. These diseases affect millions of people worldwide, primarily in Africa, Asia and Latin America, and kidney involvement is associated with increased mortality. The most common kidney complications of parasitic diseases are acute kidney injury, glomerulonephritis and tubular dysfunction. The mechanisms that underlie parasitic disease-associated kidney injury include direct parasite damage; immunological phenomena, including immune complex deposition and inflammation; and systemic manifestations such as haemolysis, haemorrhage and rhabdomyolysis. In addition, use of nephrotoxic drugs to treat parasitic infections is associated with acute kidney injury. Early diagnosis of kidney involvement and adequate management is crucial to prevent progression of kidney disease and optimize patient recovery.

Key points

  • Parasitic diseases are a major public health problem worldwide and are associated with multiple complications, including kidney injury.

  • The highest incidence of parasitic diseases is in tropical regions; however, they are increasingly observed in high-income countries, mainly among immigrant populations.

  • Kidney involvement is common in Chagas disease, filariasis, leishmaniasis, malaria and schistosomiasis.

  • Kidney injury in these diseases is mediated by immunological phenomena, systemic manifestations of the parasitic infection, direct damage caused by the parasites and use of nephrotoxic medications.

  • Acute kidney injury, glomerulonephritis and tubular dysfunction are the most frequently observed kidney abnormalities in patients with parasitic diseases.

  • Early detection of kidney impairment in these patients is essential to enable adequate management and prevent progression to chronic kidney disease and/or kidney failure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Kidney involvement in Chagas disease.
Fig. 2: Kidney involvement in filariasis.
Fig. 3: Kidney involvement in visceral leishmaniasis.
Fig. 4: Kidney involvement in malaria.
Fig. 5: Kidney involvement in schistosomiasis.

Similar content being viewed by others

References

  1. World Health Organization. Control of neglected tropical diseases. https://www.who.int/teams/control-of-neglected-tropical-diseases (2021).

  2. World Health Organization. Malaria. Key Facts https://www.who.int/news-room/fact-sheets/detail/malaria (2022).

  3. Souza et al. Infectious and parasitic diseases in Brazil, 2010 to 2017: considerations for surveillance. Rev. Panam. Salud Publica 44, e10 (2020).

    PubMed  PubMed Central  Google Scholar 

  4. Goterris, L. et al. Screening of parasitic diseases in the asymptomatic immigrant population. Enferm. Infecc. Microbiol. Clin. 34, 25–31 (2016).

    Article  PubMed  Google Scholar 

  5. Berto, C. G., Coyle, C. M., Friedman, L. & Walker, P. F. Where was my patient born? The intersection of tropical medicine and migrant health. Curr. Opin. Infect. Dis. https://doi.org/10.1097/QCO.0000000000000773 (2021).

    Article  PubMed  Google Scholar 

  6. Buosi, A. P. A. et al. The rights of patients with chronic kidney disease in the world: legal perspectives and challenges in Brazil, India, Portugal, South Africa, and Nigeria. Contrib. Nephrol. 199, 322–338 (2021).

    Google Scholar 

  7. Moura-Neto, J. A., Divino-Filho, J. C. & Ronco, C. Nephrology Worldwide (Springer Nature, 2021).

  8. Srisawat, N. & Sitprija, V. Tropical diseases: a public health problem with impact on nephrology. in Tropical Nephrology (Bezerra da Silva Junior, G., De Francesco Daher, E. & Barros, E.) 1–16 (Springer Nature, 2020).

  9. Meneses, G. C. et al. Novel kidney injury biomarkers in tropical infections: a review of the literature. Rev. Inst. Med. Trop. S. Paulo. 62, e14 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Daher, E. F., Silva Junior, G. B., Barros, E. & Antunes, V. V. H. Renal involvement in Chagas’ disease (American trypanosomiasis). in Tropical Nephrology (Bezerra da Silva Junior, G. B., De Francesco Daher, E. F. & Barros, E.) 105–112 (Springer Nature, 2020).

  11. World Health Organization. Chagas disease (American trypanosomiasis) — Epidemiology https://www.who.int/chagas/epidemiology/en/#:~:text=An%20estimated%208%20million%20people,10%20000%20deaths%20per%20year. (2020).

  12. Silva Junior, G. B., Antunes, V. V. H., Motta, M., Barros, E. J. G. & Daher, E. F. Chagas disease-associated kidney injury — a review. Nefrol. Latinoam. 14, 22–26 (2017).

    Article  Google Scholar 

  13. Bey, E. et al. Lower urinary tract dysfunction in chronic Chagas disease: clinical and urodynamic presentation. World J. Urol. 37, 1395–1402 (2019).

    Article  PubMed  Google Scholar 

  14. Petruccelli, K. C. et al. Type 1 cardiorenal syndrome in a patient with an acute infection caused by Trypanosoma cruzi in the Brazilian Amazon region — a case report. Rev. Soc. Bras. Med. Trop. 51, 869–872 (2018).

    Article  PubMed  Google Scholar 

  15. González, R. P. et al. Incidence, mortality and positive predictive value of type 1 cardiorenal syndrome in acute coronary syndrome. PLoS One 11, e0167166 (2016).

    Article  CAS  Google Scholar 

  16. Fernandes, A. M. S. et al. Malnutrition, anemia and renal dysfunction in patients with Chagasic cardiomyopathy. Int. J. Cardiol. 151, 109–110 (2011).

    Article  PubMed  Google Scholar 

  17. Lemos, J. R. D. et al. Influence of parasite load on renal function in mice acutely infected with Trypanosoma cruzi. PLoS One 8, e71772 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tarleton, R. L. Chagas disease: a role for autoimmunity? Trends Parasitol. 19, 447–451 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Shintaku, M., Takeda, S., Miura, S., Yutani, C. & Tsutsumi, Y. Chronic Chagastic cardiomyopathy associated with membranoproliferative glomerulonephritis: report of an autopsy case. Pathol. Int. 70, 47–52 (2020).

    Article  PubMed  Google Scholar 

  20. Oliveira, G. M. et al. Absence of Fas-L aggravates renal injury in acute Trypanosoma cruzi infection. Mem. Inst. Oswaldo Cruz. 104, 1063–1071 (2009).

    Article  PubMed  Google Scholar 

  21. Oliveira, G. M., Silva, T. M., Batista, W. S., Franco, M. & Schor, N. Acute Trypanosoma cruzi experimental infection induced renal ischemic/reperfusion lesion in mice. Parasitol. Res. 106, 111–120 (2009).

    Article  PubMed  Google Scholar 

  22. Xavier-Júnior, J. C. C., Silva, V. S. & Viero, R. M. Membranous nephropathy PLA2R+ associated with Chagas disease. Autops. Case Rep. 5, 27–32 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Carvalho, M. F., Franco, M. F. & Soares, V. A. Amastigotes forms of Trypanosoma cruzi detected in a renal allograft. Rev. Inst. Med. Trop. S. Paulo 39, 223–226 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Pierrotti, L. C. et al. Chagas disease recommendations for solid-organ transplant recipients and donors. Transplantation 102, S1–S7 (2018).

    Article  PubMed  Google Scholar 

  25. Silva, A. E. et al. Acute Chagas’ disease in postrenal transplant and treatment with benzonidazole. Ann. Diagn. Pathol. 14, 199–203 (2010).

    Article  PubMed  Google Scholar 

  26. Inga, L. A. C. & Olivera, M. J. Reactivation of Chagas disease in a heart transplant patient infected by sylvatic Trypanosoma cruzi discrete typing unit I. Rev. Soc. Bras. Med. Trop. 52, e20180512 (2019).

    Article  PubMed  Google Scholar 

  27. Ferraresso, M. G., Torre, A. C., Piva, M. M. M. & Barcan, L. Chagas disease reactivation: cutaneous manifestations in a transplanted patient. Bras. Dermatol. 93, 890–892 (2018).

  28. Pinheiro, M. E., Duarte, D. B., Oliveira, M. J. C. & Fontes, G. Nephropathy in lymphatic filariasis. in Tropical Nephrology (Bezerra da Silva Junior, G. B., De Francesco Daher, E. F. & Barros, E.) 137–153 (Springer Nature, 2020).

  29. Kapa, D. R. & Mohamed, A. J. Progress and impact of 20 years of a lymphatic filariasis elimination programme in South-East Asia. Int. Health 13, S17–S21 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. World Health Organization. Lymphatic filariasis — epidemiology. https://www.who.int/lymphatic_filariasis/epidemiology/en/ (2020).

  31. Adeleke, A. A. Parasitic chyluria in a 72-year-old Sierra Leonean woman: a case report. Afr. J. Prim. Health Care Fam. Med. 11, e1–e4 (2019).

    Article  PubMed  Google Scholar 

  32. Local Burden of Disease 2019 Neglected Tropical Diseases Collaborators. The global distribution of lymphatic filariasis, 2000–18: a geospatial analysis. Lancet Glob. Health 8, e1186–e1194 (2020).

    Article  Google Scholar 

  33. Faraj, J., Mander, J., Burnett, J. R. & Prentice, D. Filiarial chyluria with nephrotic-range proteinuria and associated hypoalbuminaemia and hypogammaglobulinaemia secondary to bilateral lymphorenal fistulae. BMJ Case Rep. 2017, bcr2017221114 (2017).

    Article  PubMed Central  Google Scholar 

  34. van Velthuysen, M. L. F. & Florquin, S. Glomerulopathy associated with parasitic infections. Clin. Microbiol. Rev. 13, 55–66 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sudrania, M. K., Valson, A. T., Dangi, A. D. & Kekre, N. S. Chyluria with massive proteinuria: do not reach for the biopsy gun! Saudi. J. Kidney Dis. Transpl. 31, 1407–1410 (2020).

    Article  Google Scholar 

  36. Cheng, J. T., Mohan, S., Nasr, S. H. & D’Agati, V. D. Chyluria presenting as milky urine and nephrotic-range proteinuria. Kidney Int. 70, 1518–1522 (2006).

    Article  PubMed  Google Scholar 

  37. Sundar, S., Venkataramanan, K., Verma, H., Bhardwaj, M. & Mahapatra, H. S. Filariasis, with chyluria and nephrotic range proteinuria. J. Assoc. Physicians India 61, 487–489 (2013).

    PubMed  Google Scholar 

  38. Shubham, S., Ahuja, A. & Bhardwaj, M. Microfilaria in kidney biopsy: a report of two cases. J. Infect. Public Health 11, 732–734 (2018).

    Article  PubMed  Google Scholar 

  39. Saha, M. et al. An occult filarial infection presenting as chyluria with proteinuria: a case report and review of literature. BMJ Case Rep. 2012, bcr0120125635 (2012).

    PubMed  PubMed Central  Google Scholar 

  40. Nayak, H. K. et al. A rare case of reversible acquired AA-type renal amyloidosis in a chronic filariasis patient receiving antifilarial therapy. Clin. Exp. Nephrol. 15, 591–595 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Date, A., Neela, P. & Shastry, J. C. Membrano proliferative glomerulonephritis in a tropical environment. Ann. Trop. Med. Parasitol. 77, 279–285 (1983).

    Article  CAS  PubMed  Google Scholar 

  42. Burza, S., Croft, S. L. & Boelaert, M. Leishmaniasis. Lancet 392, 951–970 (2018).

    Article  PubMed  Google Scholar 

  43. Silva Junior, G. B., Barros, E. J. G. & Daher, E. F. Kidney involvement in leishmaniasis — a review. Braz. J. Infect. Dis. 18, 434–440 (2014).

    Article  PubMed  Google Scholar 

  44. McGwire, B. S. & Satoskar, A. R. Leishmaniasis: clinical syndromes and treatment. QJM 107, 7–14 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Meneses, G. C., Henn, G. A. L., Martins, A. M. C., Oliveira, M. J. C. & Daher, E. F. Visceral leishmaniasis (Kala-azar) nephropathy. in Tropical Nephrology (Bezerra da Silva Junior, G. B., De Francesco Daher, E. F. & Barros, E.) 249–262 (Springer Nature, 2020).

  46. World Health Organization. Leishmaniasis: epidemiological situation. https://www.who.int/leishmaniasis/burden/en/ (2020).

  47. Viriyavejakul, P., Viravan, C., Riganti, M. & Punpoowong, B. Imported cutaneous leishmaniasis in Thailand. Southeast Asian J. Trop. Med. Public Health 28, 558–562 (1997).

    CAS  PubMed  Google Scholar 

  48. Leelayoova, S. et al. Leishmaniasis in Thailand: a review of causative agents and situations. Am. J. Trop. Med. Hyg. 96, 534–542 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Alcântara, C. C. S. et al. Renal dysfunction in leishmaniasis and Chagas disease coinfection: a case report. Rev. Inst. Med. Trop. S. Paulo 60, e73 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Meneses, G. C. et al. Visceral leishmaniasis-associated nephropathy in hospitalized Brazilian patients: new insights based on kidney injury biomarkers. Trop. Med. Int. Health 23, 1046–1057 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Oliveira, M. J. C. et al. Risk factors for acute kidney injury in visceral leishmaniasis (Kala-Azar). Am. J. Trop. Med. Hyg. 82, 449–453 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hailu, W. et al. Acute kidney injury in patients with visceral leishmaniasis in Northwest Ethiopia. PLoS One 16, e 0252419 (2021).

    Article  CAS  Google Scholar 

  53. Oliveira, R. A. et al. Renal tubular dysfunction in patients with American cutaneous leishmaniasis. Kidney Int. 80, 1099–1106 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Rocha, P. N. et al. Role of urine neutrophil gelatinase-associated lipocalin in the early diagnosis of amphotericin B-induced acute kidney injury. Antimicrob. Agents Chemother. 59, 6913–6921 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Eichenberger, A. et al. A severe case of visceral leishmaniasis and liposomal amphotericin B treatment failure in an immunosuppressed patient 15 years after exposure. BMC Infect. Dis. 17, 81 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pedroso, J. A. et al. Elderly kidney transplant recipient with intermittent fever: a case report of leishmaniasis with acute kidney injury during liposomal amphotericin B therapy. Transpl. Proc. 46, 2365–2367 (2014).

    Article  CAS  Google Scholar 

  57. Comai, G. et al. Screening strategies for the diagnosis of asymptomatic Leishmania infection in dialysis patients as a model for kidney transplant candidates. J. Nephrol. 34, 191–195 (2021).

    Article  PubMed  Google Scholar 

  58. Daher, E. F., Fonseca, P. P., Gerhard, E. S. & Silva Leitão, T. M. J. & Silva Junior, G.B. Clinical and epidemiological features of visceral leishmaniasis and HIV co-infection in fifteen patients from Brazil. J. Parasitol. 95, 652–655 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Vassallo, M. et al. Visceral leishmaniasis due to Leishmania infantum with renal involvement in HIV-infected patients. BMC Infect. Dis. 14, 561 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Enríquez, R. et al. Membranoproliferative glomerulonephritis due to visceral leishmaniasis in an HIV patient. Am. J. Case. Rep. 9, 8–11 (2015).

    Article  Google Scholar 

  61. Santos, V. S. et al Malaria and renal complications. in Tropical Nephrology (Bezerra da Silva Junior, G. B., De Francesco Daher, E. F. & Barros, E.). 227–289 (Springer Nature, 2020).

  62. Barber, B. E. et al. Intravascular haemolysis in severe Plasmodium knowlesi malaria: association with endothelial activation, microvascular dysfunction, and acute kidney injury. Emerg. Microbes Infect. 7, 106 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Grigg, M. J. E. et al. Age-related clinical spectrum of plasmodium knowlesi malaria and predictors of severity. Clin. Infect. Dis. 67, 350–359 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Price, R. N., Douglas, N. M. & Anstey, N. M. New developments in Plasmodium vivax malaria: severe disease and the rise of chloroquine resistance. Curr. Opin. Infect. Dis. 2, 430–435 (2009).

    Article  Google Scholar 

  65. Naing, C., Whittaker, M. A., Wai, V. N. & Mal, J. W. Is Plasmodium vivax malaria a severe malaria? A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 8, e3071 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Howes, R. E. et al. Global epidemiology of Plasmodium vivax. Am. J. Trop. Med. Hyg. 95, 15–34 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. World Health Organization. Malaria — Key Facts https://www.who.int/news-room/fact-sheets/detail/malaria (2022).

  68. Batte, A. et al. Malaria-associated acute kidney injury in African children: prevalence, pathophysiology, impact, and management challenges. Int. J. Nephrol. Renovasc. Dis. 14, 235–253 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Silva Junior, G. B., Pinto, J. R., Barros, E. J. G., Farias, G. M. N. & Daher, E. F. Kidney involvement in malaria: an update. Rev. Inst. Med. Trop. S. Paulo 59, e53 (2017).

    Google Scholar 

  70. Plewes, K. et al. Acetaminophen as a renoprotective adjunctive treatment in patients with severe and moderately severe falciparum malaria: a randomized, controlled, open-label trial. Clin. Infect. Dis. 67, 991–999 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kaur, C. et al. Renal detection of Plasmodium falciparum, Plasmodium vivax and Plasmodium knowlesi in malaria associated acute kidney injury: a retrospective case–control study. BMC Res. Notes 13, 37 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Koopmans, L. C. et al. Acute kidney injury in imported Plasmodium falciparum malaria. Malar. J. 14, 523 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Shukla, V. S., Singh, R. G. & Rathore, S. S. Usha. Outcome of malaria-associated acute kidney injury: a prospective study from a single center. Ren. Fail. 35, 801–805 (2013).

  74. Prasad, R. & Mishra, O. P. Acute kidney injury in children with Plasmodium falciparum malaria: determinants for mortality. Perit. Dial. Int. 36, 213–217 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Padhi, R. K. & Mishra, S. Incidence of renal involvement in malaria in children of Odisha. ISRN Nephrol. 2013, 573735 (2012).

    PubMed  PubMed Central  Google Scholar 

  76. Conroy, A. L. et al. Chitinase‑3‑like 1 is a biomarker of acute kidney injury and mortality in paediatric severe malaria. Malar. J. 17, 82 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Zaki, S. A. et al. Acute renal failure associated with malaria in children. Saudi. J. Kidney Dis. Transpl. 24, 303–308 (2013).

    Article  PubMed  Google Scholar 

  78. Rivera-Correa, J. et al. Autoantibody levels are associated with acute kidney injury, anemia and post-discharge morbidity and mortality in Ugandan children with severe malaria. Sci. Rep. 9, 14940 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Plewes, K. et al. Cell-free hemoglobin mediated oxidative stress is associated with acute kidney injury and renal replacement therapy in severe falciparum malaria: an observational study. BMC Infect. Dis. 17, 313 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Plewes, K. et al. Correlation of biomarkers for parasite burden and immune activation with acute kidney injury in severe falciparum malaria. Malar. J. 13, 91 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Löwenberg, E. C. et al. Severe malaria is associated with a deficiency of von Willebrand factor cleaving protease, ADAMTS13. Thromb. Haemost. 103, 181–187 (2010).

    Article  PubMed  CAS  Google Scholar 

  82. Barsoum, R. S. Parasitic kidney disease: milestones in the evolution of our knowledge. Am. J. Kidney Dis. 61, 501–513 (2013).

    Article  PubMed  Google Scholar 

  83. Halleux, D. et al. A nephrotic syndrome of tropical origin: case report and short review of the aetiology. Acta Clin. Belg. 69, 379–381 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Gentile, F. et al. From Uganda to Italy: a case of nephrotic syndrome secondary to Plasmodium infection, quartan malarial nephropathy and kidney failure. Turk. J. Pediatr. 61, 776–779 (2019).

    Article  PubMed  Google Scholar 

  85. Azhar, M., Alasadi, L., Kemnele, S., Reiser, I. W. & Spitalewitz, S. Collapsing focal segmental glomerulosclerosis with acute interstitial nephritis associated with plasmodium falciparum: a case report and review of the literature. Am. J. Case. Rep. 20, 1576–1580 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bhadauria, D. et al. P. vivax malaria presenting as thrombotic microangiopathy. J. Assoc. Physicians India 65, 28–31 (2017).

    PubMed  Google Scholar 

  87. Duarte, D. B., Daher, E. F., Pinheiro, M. E., Oliveira, M. J. Schistosomiasis mansoni-associated kidney disease. in Tropical Nephrology (Bezerra da Silva Junior, G. B., De Francesco Daher, E. F. & Barros, E.) 113–129 (Springer Nature, 2020).

  88. World Health Organization. Schistosomiasis — Key Facts https://www.who.int/news-room/fact-sheets/detail/schistosomiasis#:~:text=Epidemiology,for%20schistosomiasis%20live%20in%20Africa (2020).

  89. Srougi, V., Gallucci, F. P., Mattedi, R. L. & Srougi, M. Carcinosarcoma of the bladder following local schistosomiasis infection. BMJ Case Rep. 2017, bcr2016218642 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Oranusi, C. K., Nwofor, A. M. E., Onyiaorah, I. V. & Ukah, C. O. Schistosomal stricture of the ureter-diagnostic dilemma. Niger. J. Clin. Pract. 14, 495–498 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Wang, Y. et al. Urethral stricture caused by schistosomiasis in a renal transplant recipient. Nephrology 17, 197–198 (2012).

    Article  PubMed  Google Scholar 

  92. Antwi, A., Aboah, K. E. K. & Sarpong, C. K. G. The unacknowledged impact of urinary schistosomiasis in children: 5 cases from Kumari, Ghana. Ghana. Med. J. 48, 228–233 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ghirardo, S., Trevisan, M., Galimberti, A. M. C., Pennesi, M. & Barbi, E. Young girl with intermittent hematuria. Ann. Emerg. Med. 74, e21–e22 (2019).

    Article  PubMed  Google Scholar 

  94. Souza, C. A. et al. Prevalence of urodynamic changes with risk for upper urinary tract damage in neuroschistosomiasis patients. Rev. Soc. Bras. Med. Trop. 52, e20180101 (2019).

    Article  PubMed  Google Scholar 

  95. Duarte, D. B. et al. Acute kidney injury in schistosomiasis: a retrospective cohort of 60 patients in Brazil. J. Parasitol. 101, 244–247 (2015).

    Article  PubMed  Google Scholar 

  96. Hanemann, A. L. P. et al. Monocyte chemotactic protein-1 (MCP-1) in patients with chronic schistosomiasis mansoni: evidences of subclinical renal inflammation. PLoS One 8, e80421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Duarte, D. B. et al. Renal function in hepatosplenic schistosomiasis–an assessment of renal tubular disorders. PLoS One 9, e115197 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Neves, P. D. M. M. et al. Schistosomiasis-associated glomerulopathy: clinical aspects, pathological characteristics, and renal outcomes. Clin. Nephrol. 93, 251–261 (2020).

    Article  PubMed  Google Scholar 

  99. Rosinger, A. Y. et al. Schistosomiasis and hydration status: Schistosoma haematobium, but not Schistosoma mansoni increases urine specific gravity among rural Tanzanian women. Am. J. Phys. Anthropol. 166, 952–959 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Duarte, D. B. et al. Aquaporin-2 and NKCC2 expression pattern in patients with hepatosplenic schistosomiasis. Trop. Med. Int. Health 25, 1140–1144 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Araújo, S. A. et al. The immunohistological profile of membranous nephropathy associated with chronic Schistosoma mansoni infection reveals a glomerulopathy with primary features. Kidney Int. 96, 793–794 (2019).

    Article  PubMed  Google Scholar 

  102. Otoni, A. et al. Chemokine profile in the sera and urine of patients with schistosomal glomerulopathy. Am. J. Trop. Med. Hyg. 90, 48–53 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sobh, M. et al. Schistosoma mansoni nephropathy in Syrian golden hamsters: effect of dose and duration of infection. Nephron 59, 121–130 (1991).

    Article  CAS  PubMed  Google Scholar 

  104. Galvão, R. L. F. et al. Kidney injury biomarkers and parasitic loads of Schistosoma mansoni in a highly endemic area in northeastern Brazil. Acta Trop. 228, 106311 (2022).

    Article  PubMed  CAS  Google Scholar 

  105. Santos, W. L. C., Sweet, G. M. M., Bahiense-Oliveira, M. & Rocha, P. N. Schistosomal glomerulopathy and changes in the distribution of histological patterns of glomerular diseases in Bahia, Brazil. Mem. Inst. Oswaldo Cruz 106, 901–904 (2011).

    Article  Google Scholar 

  106. Rodrigues, V. L. et al. Glomerulonephritis in schistosomiasis mansoni: a time to reappraise. Rev. Soc. Bras. Med. Trop. 43, 638–642 (2010).

    Article  PubMed  Google Scholar 

  107. Barsoum, R. S. Urinary schistosomiasis: review. J. Adv. Res. 4, 453–459 (2013).

    Article  PubMed  Google Scholar 

  108. Neves, P. D. M. M. et al. Schistosoma mansoni and membranous nephropathy. Kidney Int. 89, 959 (2016).

    Article  PubMed  Google Scholar 

  109. Gonçalves, F. O., Fontes, T. M. S. & Canuto, A. P. P. S. L. Schistosoma mansoni associated glomerulopathy with IgA mesangial deposits: case report. J. Bras. Nefrol. 39, 86–90 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all health care workers who dedicate their careers to the treatment of infectious and parasitic diseases, especially those in Brazil, Egypt, India and Thailand. E.F.D. and G.B.S.J. have received grants from the Brazilian Research Council — Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq (protocol numbers 302017/2018-6 and 310974/2020-8).

Author information

Authors and Affiliations

Authors

Contributions

E.D.F.D., G.B.S.J., M.T., N.S., P.S., S.N., T.F., M.A.S.F.B., M.V. and V.J. researched the data for the article. E.D.F.D., G.B.S.J., M.T., N.S., P.S., S.N. and T.F. wrote the text. E.D.F.D., G.B.S.J., M.V.G.L., T.F., M.A.S.F.B. and M.V. made substantial contributions to discussion of the content. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Elizabeth De Francesco Daher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks A. Bagga, who co-reviewed with V. Mahesh; R. Claure-Del Granado; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Anthropozoonosis

A disease that is transmitted from animals to humans.

Haematophagous

Feeding on blood.

‘Mega’ organs

Highly disproportionate enlargement of organs, which is typically seen in Chagas disease.

Dyskinesias

Movement disorders characterized by involuntary muscle movements.

Amastigote

Rounded cells of protozoa without flagella, especially used to describe Leishmania spp.

Chyluria

The presence of chyle (lymph laden with fat) in the urine, resulting in a milky white colour.

Dysuria

Pain or discomfort during urination.

Haematochyluria

The presence of blood and chyle or lymph in the urine.

Oliguria

Reduced urine output, usually defined as <500 ml in 24 h.

Rhabdomyolysis

A clinical condition caused by muscle injury with release of intracellular content, including myoglobin, creatine kinase, lactate dehydrogenase and electrolytes. These substances are harmful to the kidney.

Hyperparasitaemia

A high parasite load in the bloodstream.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daher, E.D.F., da Silva Junior, G.B., Trivedi, M. et al. Kidney complications of parasitic diseases. Nat Rev Nephrol 18, 396–406 (2022). https://doi.org/10.1038/s41581-022-00558-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-022-00558-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing