28.07.2013 Views

Migration and breeding biology of Arctic terns in Greenland

Migration and breeding biology of Arctic terns in Greenland

Migration and breeding biology of Arctic terns in Greenland

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

MIGRATION AND BREEDING BIOLOGY OF<br />

ARCTIC TERNS IN GREENLAND<br />

PhD Thesis 2010<br />

Carsten Egevang<br />

AU<br />

Greenl<strong>and</strong> Institute <strong>of</strong> Natural Resources<br />

NATIONAL ENVIRONMENTAL RESEARCH INSTITUTE<br />

center for macroecology, evolution<br />

a nd climate<br />

AARHUS UNIVERSITY university <strong>of</strong> copenhagen


AU<br />

MIGRATION AND BREEDING BIOLOGY OF<br />

ARCTIC TERNS IN GREENLAND<br />

PhD Thesis 2010<br />

Carsten Egevang<br />

Greenl<strong>and</strong> Institute <strong>of</strong> Natural Resources<br />

NATIONAL ENVIRONMENTAL RESEARCH INSTITUTE<br />

AARHUS UNIVERSITY<br />

center for macroecology, evolution<br />

<strong>and</strong> climate<br />

university <strong>of</strong> copenhagen


Title: <strong>Migration</strong> <strong>and</strong> <strong>breed<strong>in</strong>g</strong> <strong>biology</strong> <strong>of</strong> <strong>Arctic</strong> <strong>terns</strong> <strong>in</strong> Greenl<strong>and</strong><br />

Subtitle: PhD Thesis<br />

Author: Carsten Egevang<br />

Affi liation: Greenl<strong>and</strong> Institute <strong>of</strong> Natural Resources<br />

Dep. <strong>of</strong> <strong>Arctic</strong> Environment, National Environmental Research Institute, Aarhus University<br />

Department <strong>of</strong> Biology, Center for Macroecology, Evolution <strong>and</strong> Climate, University <strong>of</strong> Copenhagen<br />

Publisher: Greenl<strong>and</strong> Institute <strong>of</strong> Natural Resources <strong>and</strong> National Environmental Research Institute (NERI)©<br />

Aarhus University – Denmark<br />

URL: http://www.neri.dk<br />

Date <strong>of</strong> publication: March 2010<br />

F<strong>in</strong>ancial support: Commission for Scientifi c Research <strong>in</strong> Greenl<strong>and</strong> (KVUG)<br />

Please cite as: Egevang, C. 2010: <strong>Migration</strong> <strong>and</strong> <strong>breed<strong>in</strong>g</strong> <strong>biology</strong> <strong>of</strong> <strong>Arctic</strong> <strong>terns</strong> <strong>in</strong> Greenl<strong>and</strong>. PhD thesis. Greenl<strong>and</strong> Institute<br />

<strong>of</strong> Natural Resources, Dep. <strong>of</strong> <strong>Arctic</strong> Environment, NERI, Aarhus University & Department <strong>of</strong> Biology,<br />

Center for Macroecology, Evolution <strong>and</strong> Climate, University <strong>of</strong> Copenhagen. Greenl<strong>and</strong> Institute <strong>of</strong> Natural<br />

Resources & National Environmental Research Institute, Aarhus University, Denmark. 104 pp.<br />

Reproduction permitted provided the source is explicitly acknowledged.<br />

Abstract: This thesis presents novel fi nd<strong>in</strong>gs for the <strong>Arctic</strong> tern <strong>in</strong> Greenl<strong>and</strong>. Included is a study on <strong>Arctic</strong> tern migration<br />

– the longest annual migration ever recorded <strong>in</strong> any animal. The study documented how Greenl<strong>and</strong> <strong>and</strong> Icel<strong>and</strong><br />

<strong>breed<strong>in</strong>g</strong> <strong>terns</strong> conduct the roundtrip migration to the Weddell Sea <strong>in</strong> Antarctica <strong>and</strong> back. Although the sheer<br />

distance (71,000 km on average) travelled by the birds is <strong>in</strong>terest<strong>in</strong>g, the study furthermore showed how the<br />

birds depend on high-productive at-sea areas <strong>and</strong> global w<strong>in</strong>d systems dur<strong>in</strong>g their massive migration.<br />

Furthermore <strong>in</strong>cluded is the fi rst quantifi ed estimate <strong>of</strong> the capacity to produce a replacement clutch <strong>in</strong> <strong>Arctic</strong><br />

<strong>terns</strong>. We found that approximately half <strong>of</strong> the affected birds would produce a replacement clutch when the<br />

eggs were removed late <strong>in</strong> the <strong>in</strong>cubation period.<br />

At a level <strong>of</strong> more national <strong>in</strong>terest, the study produced the fi rst estimates <strong>of</strong> the key prey species <strong>of</strong> the <strong>Arctic</strong><br />

tern <strong>in</strong> Greenl<strong>and</strong>. Although zooplankton <strong>and</strong> various fi sh species were present <strong>in</strong> the chick diet <strong>of</strong> <strong>terns</strong><br />

<strong>breed<strong>in</strong>g</strong> <strong>in</strong> Disko Bay, Capel<strong>in</strong> was the s<strong>in</strong>gle most important prey species found <strong>in</strong> all age groups <strong>of</strong> chicks.<br />

The thesis also <strong>in</strong>cludes a study on the fl uctuat<strong>in</strong>g <strong>breed<strong>in</strong>g</strong> found <strong>in</strong> <strong>Arctic</strong> <strong>terns</strong>. Breed<strong>in</strong>g birds showed a<br />

considerable variation <strong>in</strong> colony size between years <strong>in</strong> the small <strong>and</strong> mid sized colonies <strong>of</strong> Disko Bay. These<br />

variations were likely to be l<strong>in</strong>ked to local phenomena, such as disturbance from predators, rather than to<br />

large-scale occurr<strong>in</strong>g phenomena.<br />

Included is also a study that documents the <strong>breed<strong>in</strong>g</strong> association between <strong>Arctic</strong> <strong>terns</strong> <strong>and</strong> other <strong>breed<strong>in</strong>g</strong><br />

waterbirds. At Kitsissunnguit a close behavioural response to tern alarms could be identifi ed. These fi nd<strong>in</strong>gs<br />

imply that the altered distributions <strong>of</strong> waterbirds observed at Kitsissunnguit were governed by the distribution<br />

<strong>of</strong> <strong>breed<strong>in</strong>g</strong> <strong>Arctic</strong> <strong>terns</strong>.<br />

Included <strong>in</strong> the thesis are furthermore results with an appeal to the Greenl<strong>and</strong> management agencies. Along<br />

with estimates <strong>of</strong> the <strong>Arctic</strong> tern population size at the two most important <strong>Arctic</strong> tern colonies <strong>in</strong> West Greenl<strong>and</strong><br />

<strong>and</strong> East Greenl<strong>and</strong>, the study produced recommendations on how a potential future susta<strong>in</strong>able egg<br />

harvest could be carried out, <strong>and</strong> on how to monitor <strong>Arctic</strong> tern colonies <strong>in</strong> Greenl<strong>and</strong>.<br />

Keywords: At-sea hot-spots, <strong>Arctic</strong>, <strong>breed<strong>in</strong>g</strong> association, <strong>breed<strong>in</strong>g</strong> ecology, <strong>breed<strong>in</strong>g</strong> fl uctuation, colony attendance,<br />

diet, egg harvest, global w<strong>in</strong>d systems, long-distance migration, nature management, Sterna paradisaea,<br />

replacement clutch.<br />

Supervisors: Pr<strong>of</strong>essor Carsten Rahbek, Department <strong>of</strong> Biology, Center for Macroecology,<br />

Evolution <strong>and</strong> Climate, University <strong>of</strong> Copenhagen.<br />

Senior advisor Dr. Morten Frederiksen, Dep. <strong>of</strong> <strong>Arctic</strong> Environment,<br />

National Environmental Research Institute, Aarhus University.<br />

Dr. Norman Ratcliffe, British Antarctic Survey, Natural Environment Research Council.<br />

Layout: T<strong>in</strong>na Christensen<br />

Frontpage: Carsten Egevang<br />

ISBN: 87-91214-46-7<br />

ISBN (DMU): 978-87-7073-166-9<br />

Pr<strong>in</strong>ted by: Rosendahls – Schultz Grafi sk a/s<br />

Number <strong>of</strong> pages: 104<br />

Circulation: 100<br />

Data sheet<br />

Internet version: The report is available <strong>in</strong> electronic format (pdf) at NERI’s website<br />

http://www.dmu.dk/Pub/PHD_CEP.pdf


Content<br />

List <strong>of</strong> publications/manuscripts <strong>in</strong>cluded <strong>in</strong> the thesis 5<br />

Preface 6<br />

Acknowledgements 8<br />

Summary 9<br />

Dansk resumé 11<br />

Eqikkaaneq 13<br />

1 Synopsis 15<br />

1.1 Introduction 15<br />

1.2 Objectives 16<br />

1.3 Distribution 16<br />

1.4 Population status <strong>in</strong> Greenl<strong>and</strong> 16<br />

1.5 Population status at Kitsissunnguit 17<br />

1.6 Fluctuat<strong>in</strong>g <strong>breed<strong>in</strong>g</strong> 17<br />

1.7 Plausible cause <strong>of</strong> decl<strong>in</strong>e <strong>in</strong> population size 18<br />

1.8 Renest<strong>in</strong>g <strong>in</strong> <strong>Arctic</strong> <strong>terns</strong> 19<br />

1.9 Variation <strong>in</strong> <strong>breed<strong>in</strong>g</strong> phenology 20<br />

1.10 Clutch size 21<br />

1.11 Hatch<strong>in</strong>g <strong>and</strong> fl edg<strong>in</strong>g success 21<br />

1.12 Growth rate <strong>and</strong> chick survival 22<br />

1.13 Feed<strong>in</strong>g 23<br />

1.14 Breed<strong>in</strong>g association 24<br />

1.15 <strong>Migration</strong> 25<br />

2 Conclusion 29<br />

3 Future research 30<br />

4 References 31<br />

Manus I 35<br />

Manus II 41<br />

Manus III 57<br />

Manus IV 85<br />

Manus V 97


LIST OF PUBLICATIONS/MANUSCRIPTS<br />

INCLUDED IN THE THESIS<br />

Egevang, C., I.J. Stenhouse, R.A. Phillips, A. Petersen, J.W. Fox & J.R.D.<br />

Silk (2010). Track<strong>in</strong>g <strong>of</strong> <strong>Arctic</strong> <strong>terns</strong> Sterna paradisaea reveals longest<br />

animal migration. Proceed<strong>in</strong>gs <strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong><br />

the United States. Vol. 107: 2078-2081 (doi:10.1073/pnas.0909493107).<br />

Egevang, C., N. Ratcliffe & M. Frederiksen. Susta<strong>in</strong>able regulation <strong>of</strong><br />

<strong>Arctic</strong> tern egg harvest<strong>in</strong>g <strong>in</strong> Greenl<strong>and</strong>. Manuscript.<br />

Egevang, C., M. W. Kristensen, N. Ratcliffe & M. Frederiksen. Food-related<br />

consequences <strong>of</strong> relay<strong>in</strong>g <strong>in</strong> the <strong>Arctic</strong> Tern: Contrast<strong>in</strong>g prey availability<br />

with<strong>in</strong> a prolonged <strong>breed<strong>in</strong>g</strong> season. Manuscript submitted IBIS.<br />

Egevang, C. & M. Frederiksen. Fluctuat<strong>in</strong>g <strong>breed<strong>in</strong>g</strong> <strong>of</strong> <strong>Arctic</strong> Terns (Sterna<br />

paradisaea) <strong>in</strong> <strong>Arctic</strong> <strong>and</strong> High-arctic colonies <strong>in</strong> Greenl<strong>and</strong>. Manuscript<br />

submitted WATERBIRDS.<br />

Jørgensen, P. S., Kristensen, M. W. & Egevang, C. 2007. Red Phalarope<br />

Phalaropus fulicarius <strong>and</strong> Red-necked Phalarope Phalaropus lobatus<br />

behavioural response to <strong>Arctic</strong> Tern Sterna paradisaea colonial alarms.<br />

Dansk Ornitologisk Foren<strong>in</strong>gs Tidsskrift 101 (3): 73-78, 2007.<br />

5


6<br />

Preface<br />

This thesis is the result <strong>of</strong> my PhD conducted at the University <strong>of</strong> Copenhagen,<br />

Center for Macroecology, Evolution <strong>and</strong> Climate (UC), Greenl<strong>and</strong><br />

Institute <strong>of</strong> Natural Resources (GINR) <strong>and</strong> National Environmental Research<br />

Institute, Department <strong>of</strong> <strong>Arctic</strong> Environment (NERI). The PhD was<br />

fi nancially supported by Greenl<strong>and</strong> Institute <strong>of</strong> Natural Resources (GNIR)<br />

<strong>and</strong> the Commission for Scientifi c Research <strong>in</strong> Greenl<strong>and</strong> (KVUG). The<br />

pr<strong>in</strong>ciple supervisor was Carsten Rahbek (UC) whereas Morten Frederiksen<br />

(NERI) <strong>and</strong> Norman Ratcliffe (British Antarctic Survey) functioned as<br />

external supervisors.<br />

The pre-2002 level <strong>of</strong> knowledge on the <strong>Arctic</strong> tern <strong>in</strong> Greenl<strong>and</strong> was rather<br />

low <strong>and</strong> even rather basic biological <strong>in</strong>formation was unavailable for<br />

the species. On the other side there’s an urgent need for more <strong>in</strong>formation<br />

<strong>in</strong> the Greenl<strong>and</strong> management <strong>of</strong> the liv<strong>in</strong>g resources <strong>and</strong> protected areas.<br />

This lack <strong>of</strong> knowledge has been decisive <strong>in</strong> my cho ice <strong>of</strong> study species,<br />

study topic <strong>and</strong> study location at the plann<strong>in</strong>g <strong>of</strong> my PhD. It has been both<br />

a strong motivation factor for me throughout my PhD, but also frustrat<strong>in</strong>g<br />

at times where the lack <strong>of</strong> <strong>in</strong>formation made it diffi cult to approach topics<br />

from a theoretical po<strong>in</strong>t <strong>of</strong> view.<br />

Although my PhD <strong>of</strong>fi cially started mid 2004, my work on <strong>Arctic</strong> <strong>terns</strong><br />

<strong>in</strong> Greenl<strong>and</strong> is really a cont<strong>in</strong>uation <strong>of</strong> fi eldwork conducted <strong>in</strong> 2002 <strong>and</strong><br />

2003. Concurrently with my PhD I have worked as seabird researcher at<br />

GNIR, where I have been responsible for monitor<strong>in</strong>g seabirds <strong>in</strong> Greenl<strong>and</strong><br />

<strong>and</strong> ad-hoc advis<strong>in</strong>g the Greenl<strong>and</strong> Government <strong>in</strong> a susta<strong>in</strong>able<br />

use <strong>of</strong> the liv<strong>in</strong>g resources. For this reason the delivery date <strong>of</strong> my PhD<br />

has been prolonged to March 2010 – more than one year later than fi rst<br />

scheduled. Along the course <strong>of</strong> my PhD the topic <strong>in</strong>cluded <strong>in</strong> the PhD<br />

got extended. The technology <strong>in</strong> track<strong>in</strong>g devices for small-sized seabirds<br />

advanced <strong>and</strong> from deal<strong>in</strong>g only with <strong>breed<strong>in</strong>g</strong> ecology <strong>and</strong> census<strong>in</strong>g<br />

methods, my PhD got extended to <strong>in</strong>clude migration ecology as well.<br />

Dur<strong>in</strong>g my PhD I have been physically placed <strong>in</strong> Greenl<strong>and</strong> at GINR until<br />

May 2008, where my family <strong>and</strong> I moved to Denmark <strong>and</strong> NERI was k<strong>in</strong>d<br />

enough to <strong>of</strong>fer me a work seat.<br />

The fi eldwork <strong>in</strong> connection with my PhD was conducted at two very<br />

different fi eld sites <strong>in</strong> Greenl<strong>and</strong>: Kitsissunnguit (Grønne Ejl<strong>and</strong>) dur<strong>in</strong>g<br />

2002 to 2006 <strong>in</strong> the southern part <strong>of</strong> Disko Bay <strong>in</strong> the <strong>Arctic</strong> zone <strong>in</strong> West<br />

Greenl<strong>and</strong> <strong>and</strong> at S<strong>and</strong> Isl<strong>and</strong> (S<strong>and</strong>øen) dur<strong>in</strong>g 2007 <strong>and</strong> 2008 <strong>in</strong> high<br />

<strong>Arctic</strong> Northeast Greenl<strong>and</strong> (see fi gure 1-3).<br />

Dur<strong>in</strong>g my PhD I have produced papers, reports or book contributions as<br />

a sp<strong>in</strong>-<strong>of</strong>f from the work on <strong>Arctic</strong> <strong>terns</strong> conducted dur<strong>in</strong>g my PhD. These<br />

are not <strong>in</strong>cluded <strong>in</strong> my PhD thesis but are listed here:<br />

Egevang, C. & D. Boertmann 2008. “Ross’s Gulls (Rhodostethia rosea) <strong>breed<strong>in</strong>g</strong><br />

<strong>in</strong> Greenl<strong>and</strong>: A Review, with Special Emphasis on Records from<br />

1979 to 2007.” <strong>Arctic</strong> 61(3): 322-328.


Egevang, C. Kampp, K. & Boertmann D. 2006. ”Decl<strong>in</strong>es <strong>in</strong> <strong>breed<strong>in</strong>g</strong><br />

waterbirds follow<strong>in</strong>g a redistribution <strong>of</strong> <strong>Arctic</strong> Terns Sterna paradisaea <strong>in</strong><br />

West Greenl<strong>and</strong>” Waterbirds around the World. Eds. G. C. Boere, C. A.<br />

Galbraith & D. A. Stroud. The stationery Offi ce, Ed<strong>in</strong>burgh, UK. P. 154<br />

(http://www.jncc.gov.uk/PDF/pub07_waterbirds_part3.3.1.6.pdf).<br />

Egevang, C. , K. Kampp & D. Boertmann 2004 “The Breed<strong>in</strong>g Association<br />

<strong>of</strong> Red Phalaropes (Phalaropus fulicarius) with <strong>Arctic</strong> Terns (Sterna<br />

paradisaea): Response to a Redistribution <strong>of</strong> Terns <strong>in</strong> a Major Greenl<strong>and</strong><br />

Colony” Waterbirds 27 (4): 406-410.<br />

Egevang, C., I. J. Stenhouse, L. M. Rasmussen, M. W. Kristensen <strong>and</strong> F.<br />

Ugarte 2009. ”Breed<strong>in</strong>g <strong>and</strong> forag<strong>in</strong>g ecology <strong>of</strong> seabirds on S<strong>and</strong>øen<br />

2008”. <strong>in</strong> Jensen, L.M. & Rasch, M. (eds.) 2009: Zackenberg Ecological<br />

Research Operations, 14 th Annual Report, 2008. National Environmental<br />

Research Institute, Aarhus University, Denmark. 116 pp.<br />

Egevang, C., I. J. Stenhouse, Lars Maltha Rasmussen, Mikkel Willemoes<br />

& Fern<strong>and</strong>o Ugarte 2008. “Field report from S<strong>and</strong> Isl<strong>and</strong>, Northeast<br />

Greenl<strong>and</strong>, 2008. http://www.natur.gl/UserFiles/File/feltrapporter/<br />

Fieldreport_%20S<strong>and</strong>Isl<strong>and</strong>_2008_fi nal.pdf.<br />

Egevang, C. 2008. ”Forstyrrelser i grønl<strong>and</strong>ske havfuglekolonier, med speciel<br />

fokus på ynglende havterner på Kitsissunnguit (Grønne Ejl<strong>and</strong>),<br />

Disko Bugt”. Teknisk rapport nr. 71, Grønl<strong>and</strong>s Natur<strong>in</strong>stitut, 21 sider.<br />

http://www.natur.gl/UserFiles/File/Publlikationer/2008-02_GN_teknisk_rapport_71_fi<br />

nal_forstyrrelser_fuglekolonier.pdf<br />

Egevang, C. & Stenhouse, I. J. 2008. Mapp<strong>in</strong>g long-distance migration <strong>in</strong><br />

two <strong>Arctic</strong> seabird species p. 74-76. In: Klitgaard, A.B. <strong>and</strong> Rasch, M.<br />

(eds.) 2008. Zackenberg Ecological Research Operations, 13 th Annual Report,<br />

2007. Danish Polar Center, Danish Agency for Science, Technology<br />

<strong>and</strong> Innovation, M<strong>in</strong>istry <strong>of</strong> Science, Technology <strong>and</strong> Innovation, 2008.<br />

http://www.zackenberg.dk/graphics/Design/Zackenberg/Publications/English/Zero%202007.pdf<br />

Egevang, C. & I. J. Stenhouse 2007. ”Field report from S<strong>and</strong> Isl<strong>and</strong>, Northeast<br />

Greenl<strong>and</strong>, 2007”. http://www.natur.gl/UserFiles/File/feltrapporter/Fieldwork_S<strong>and</strong>_Isl<strong>and</strong>_2007_1.pdf<br />

Egevang, C., D. Boertmann & O. S. Kristensen 2005 ”Moniter<strong>in</strong>g af<br />

havternebest<strong>and</strong>en på Kitsissunnguit (Grønne Ejl<strong>and</strong>) og den sydlige<br />

del af Disko Bugt, 2002-2004”. Teknisk rapport nr. 62, Grønl<strong>and</strong>s Natur<strong>in</strong>stitut,<br />

41 p. http://www.natur.gl/fi ler/Havternemoniter<strong>in</strong>g.pdf<br />

The study on the migration <strong>of</strong> the <strong>Arctic</strong> tern <strong>in</strong>cluded novel fi nd<strong>in</strong>gs <strong>and</strong><br />

had appeal to a broad public audience. Therefore I build a web site (www.<br />

arctictern.<strong>in</strong>fo) especially dedicated to the communication <strong>of</strong> the results<br />

orig<strong>in</strong>at<strong>in</strong>g from our study.<br />

My thesis deals with an array <strong>of</strong> different topics with<strong>in</strong> the fi eld <strong>of</strong> ecology.<br />

From small-scale issues, like egg harvest<strong>in</strong>g by local Inuit at the <strong>breed<strong>in</strong>g</strong><br />

grounds, to large-scale occurr<strong>in</strong>g phenomena, such as global w<strong>in</strong>d systems<br />

<strong>and</strong> global mar<strong>in</strong>e biological productivity. Although, it may seem<br />

like a confl ict<strong>in</strong>g cocktail <strong>of</strong> topics, it is all focused on the same species –<br />

the gracious <strong>Arctic</strong> tern.<br />

7


8<br />

Acknowledgements<br />

I owe tremendous thanks to my external supervisor Morten Frederiksen<br />

(NERI) who has provided excellent guidance <strong>and</strong> supervision – not once<br />

did I experience that Morten couldn’t fi nd the time to support me <strong>in</strong> technical<br />

matters <strong>and</strong> give me <strong>in</strong>put <strong>in</strong>stantly. Also thanks to Norman Ratcliffe<br />

(British Antarctic Survey), my other external supervisor for help modell<strong>in</strong>g<br />

the data obta<strong>in</strong>ed over the fi eld seasons.<br />

The Greenl<strong>and</strong> Institute <strong>of</strong> Natural Resource provided the framework to<br />

work with my thesis on the <strong>Arctic</strong> tern – both <strong>in</strong> Greenl<strong>and</strong> <strong>and</strong> Denmark.<br />

For that I’m most grateful to the director Klaus Nygaard <strong>and</strong> head <strong>of</strong> department<br />

Fern<strong>and</strong>o Ugarte. Also thanks to Jesper Madsen, head <strong>of</strong> department<br />

<strong>and</strong> Anders Mosbech, head <strong>of</strong> section for their will<strong>in</strong>gness to<br />

provide me with a disk at the crowed <strong>Arctic</strong> Environment department at<br />

NERI.<br />

Special thanks goes to Scottish friend <strong>and</strong> colleague Ia<strong>in</strong> Stenhouse (National<br />

Audubon Society) who endured cold <strong>and</strong> stormy days with me <strong>in</strong><br />

a tent at S<strong>and</strong> Isl<strong>and</strong>, <strong>and</strong> gave <strong>in</strong>valuable language comments to this<br />

synopsis.<br />

My thanks goes to the people who assisted me <strong>in</strong> the fi eld over the years:<br />

David Boertmann <strong>and</strong> Morten Bjerrum (National Environmental Research<br />

Institute, Denmark), Anders Tøttrup, Mikkel Willemoes <strong>and</strong> Peter S. Jørgensen<br />

(University <strong>of</strong> Copenhagen), Lars Maltha Rasmussen, Fern<strong>and</strong>o<br />

Ugarte, Ole S. Kristensen, Lars Witt<strong>in</strong>g, Kate Skjærbæk Rasmussen <strong>and</strong><br />

Rasmus Lauridsen (GNIR), Bjarne Petersen, Qasigiannguit <strong>and</strong> Norman<br />

Ratcliffe <strong>and</strong> Stuart Benn (Royal Society for Protection <strong>of</strong> Birds). Also<br />

thanks to F<strong>in</strong>n Steffens (Qeqertarsuaq) <strong>and</strong> Elektriker-it (Aasiaat) for<br />

logistic support <strong>in</strong> Disko Bay, <strong>and</strong> to the Danish Polar Centre, Zackenberg<br />

Ecological Research Operations, POLOG, <strong>and</strong> Sledge Patrol Sirius<br />

<strong>and</strong> Nette Levermann (Greenl<strong>and</strong> Government) for logistic assistance <strong>in</strong><br />

Northeast Greenl<strong>and</strong> (S<strong>and</strong> Isl<strong>and</strong>).<br />

I will also like this opportunity to thank the local <strong>in</strong>habitants <strong>of</strong> Disko Bay.<br />

Through arranged meet<strong>in</strong>gs <strong>in</strong> Aasiaat <strong>and</strong> multiple opportunistic visits<br />

at our fi eld camp at Kitsissunnguit, they have thought me another view at<br />

harvest<strong>in</strong>g natural resources <strong>and</strong> the signifi cance <strong>of</strong> this.<br />

Last, but certa<strong>in</strong>ly not least, I would like to thank my family, my wife Inge<br />

Thaulow <strong>and</strong> my two boys Emil <strong>and</strong> Peter, for patience, underst<strong>and</strong><strong>in</strong>g<br />

<strong>and</strong> absents dur<strong>in</strong>g fi eldwork – THANKS!


Summary<br />

This PhD thesis presents the results <strong>of</strong> a study performed on the <strong>Arctic</strong><br />

tern (Sterna paradisaea) <strong>in</strong> the period 2002-2008. Data <strong>in</strong> the study were obta<strong>in</strong>ed<br />

from fi eldwork conducted at two study sites <strong>in</strong> Greenl<strong>and</strong>: Kitsissunnguit<br />

(Grønne Ejl<strong>and</strong>), Disko Bay <strong>in</strong> <strong>Arctic</strong> West Greenl<strong>and</strong> <strong>and</strong> S<strong>and</strong><br />

Isl<strong>and</strong> (S<strong>and</strong>øen) <strong>in</strong> high-<strong>Arctic</strong> Northeast Greenl<strong>and</strong>.<br />

The level <strong>of</strong> knowledge <strong>of</strong> the <strong>Arctic</strong> tern <strong>in</strong> Greenl<strong>and</strong> before 2002 was to<br />

a large extent poor, with aspects <strong>of</strong> its <strong>biology</strong> be<strong>in</strong>g completely unknown<br />

<strong>in</strong> the Greenl<strong>and</strong> population. This thesis presents novel fi nd<strong>in</strong>gs for the<br />

<strong>Arctic</strong> tern, both on an <strong>in</strong>ternational scale <strong>and</strong> on a national scale.<br />

The study on <strong>Arctic</strong> tern migration (Manus I) – the longest annual migration<br />

ever recorded <strong>in</strong> any animal – is a study with an <strong>in</strong>ternational<br />

appeal. The study documented how Greenl<strong>and</strong> <strong>and</strong> Icel<strong>and</strong> <strong>breed<strong>in</strong>g</strong><br />

<strong>terns</strong> conduct the roundtrip migration to the Weddell Sea <strong>in</strong> Antarctica<br />

<strong>and</strong> back. Although the sheer distance (71,000 km on average) travelled<br />

by the birds is <strong>in</strong>terest<strong>in</strong>g, the study furthermore showed how the <strong>terns</strong><br />

depend on high-productive at-sea areas dur<strong>in</strong>g their massive migration.<br />

On the southbound migration, the birds would stop for almost a month<br />

(25 days on average) <strong>in</strong> the central part <strong>of</strong> the North Atlantic Ocean before<br />

cont<strong>in</strong>u<strong>in</strong>g south. Close to Equator (~10º N) a divide <strong>in</strong> the migration path<br />

way occurred: seven birds migrated along the coast <strong>of</strong> Africa, while four<br />

birds crossed the Atlantic Ocean to follow the coast <strong>of</strong> South America. The<br />

northbound migration from the w<strong>in</strong>ter quarters to the <strong>breed<strong>in</strong>g</strong> grounds<br />

was performed particular fast (520 km per day on average) follow<strong>in</strong>g a<br />

route <strong>of</strong> favourable w<strong>in</strong>d systems.<br />

Included <strong>in</strong> this thesis is also the fi rst quantifi ed estimate <strong>of</strong> the capacity to<br />

produce a replacement clutch <strong>in</strong> <strong>Arctic</strong> <strong>terns</strong> (Manus II <strong>and</strong> III). Although<br />

it is <strong>of</strong>ten mentioned <strong>in</strong> the literature that the species will<strong>in</strong>gly relays, this<br />

study is the fi rst where the reproductive response <strong>of</strong> experimentally manipulated<br />

<strong>breed<strong>in</strong>g</strong> pairs is monitored. We found that approximately half<br />

(53.3 %) <strong>of</strong> the affected birds would produce a replacement clutch when<br />

the eggs were removed late <strong>in</strong> the <strong>in</strong>cubation period. Surpris<strong>in</strong>gly, growth<br />

<strong>and</strong> survival rates <strong>in</strong> chicks from these clutches did not differ from chicks<br />

reared four weeks later <strong>in</strong> the <strong>breed<strong>in</strong>g</strong> season, although a shift <strong>in</strong> forag<strong>in</strong>g<br />

pattern <strong>and</strong> prey size was apparent (Manus III).<br />

At a level <strong>of</strong> more national <strong>in</strong>terest, the study produced the fi rst estimates<br />

<strong>of</strong> the key prey species <strong>of</strong> the <strong>Arctic</strong> tern <strong>in</strong> Greenl<strong>and</strong>. Although zooplankton<br />

<strong>and</strong> various fi sh species were present <strong>in</strong> the chick diet <strong>of</strong> <strong>terns</strong><br />

<strong>breed<strong>in</strong>g</strong> <strong>in</strong> Disko Bay, Capel<strong>in</strong> (Mallotus villosus) was the s<strong>in</strong>gle most important<br />

prey species found <strong>in</strong> all age groups <strong>of</strong> chicks (Manus III).<br />

The thesis also <strong>in</strong>cludes a study on the fl uctuat<strong>in</strong>g <strong>breed<strong>in</strong>g</strong> found <strong>in</strong> <strong>Arctic</strong><br />

<strong>terns</strong> (Manus IV). Although the <strong>Arctic</strong> tern may show an overall fi delity<br />

to the <strong>breed<strong>in</strong>g</strong> region, our study showed a considerable variation <strong>in</strong> colony<br />

size between years <strong>in</strong> the small <strong>and</strong> mid sized colonies <strong>of</strong> Disko Bay.<br />

These variations were likely to be l<strong>in</strong>ked to local phenomena, such as disturbance<br />

from predators, rather than to large-scale occurr<strong>in</strong>g phenomena.<br />

From the long periods spent <strong>in</strong> <strong>Arctic</strong> tern colonies it was furthermore<br />

possible to document the <strong>breed<strong>in</strong>g</strong> association between <strong>Arctic</strong> <strong>terns</strong> <strong>and</strong><br />

9


Figure 1. An <strong>Arctic</strong> tern nest at<br />

Kitsissunnguit, Disko Bay, <strong>Arctic</strong><br />

West Greenl<strong>and</strong> where fi eldwork<br />

was conducted <strong>in</strong> 2002-2006.<br />

Note the lush vegetation surround<strong>in</strong>g<br />

the nest.<br />

Photo: Carsten Egevang.<br />

10<br />

other <strong>breed<strong>in</strong>g</strong> waterbirds. In a study conducted on <strong>breed<strong>in</strong>g</strong> phalaropes<br />

(Phalaropus fulucarius <strong>and</strong> P. lobatus) at Kitsissunnguit (Manus V) a close<br />

behavioural response to tern alarms could be identifi ed. These fi nd<strong>in</strong>gs<br />

imply that the altered distributions <strong>of</strong> waterbirds observed at Kitsissunnguit<br />

were governed by the distribution <strong>of</strong> <strong>breed<strong>in</strong>g</strong> <strong>Arctic</strong> <strong>terns</strong> as<br />

suggested by Egevang et al. (2004).<br />

Included <strong>in</strong> the thesis are furthermore results with an appeal to the Greenl<strong>and</strong><br />

management agencies. Along with estimates <strong>of</strong> the <strong>Arctic</strong> tern population<br />

size at the two most important <strong>Arctic</strong> tern colonies <strong>in</strong> West Greenl<strong>and</strong><br />

<strong>and</strong> East Greenl<strong>and</strong>, the study produced recommendations on how<br />

a potential future susta<strong>in</strong>able egg harvest could be carried out (Manus II),<br />

<strong>and</strong> on how to monitor <strong>Arctic</strong> tern colonies <strong>in</strong> Greenl<strong>and</strong> (Manus IV).


Dansk resumé<br />

Denne afh<strong>and</strong>l<strong>in</strong>g præsenterer resultater fra studier udført på havterne<br />

(Sterna paradisaea) i perioden 2002-2008. Data i forb<strong>in</strong>delse med afh<strong>and</strong>l<strong>in</strong>gen<br />

er <strong>in</strong>dsamlet gennem feltarbejde på to lokaliteter i Grønl<strong>and</strong>: Kitsissunnguit<br />

(Grønne Ejl<strong>and</strong>), Disko Bugt i arktisk Vestgrønl<strong>and</strong> samt på<br />

S<strong>and</strong>øen i høj-arktisk Nordøstgrønl<strong>and</strong>.<br />

Vidensgrundlaget for havternen i Grønl<strong>and</strong> før 2002 var gennemgående<br />

r<strong>in</strong>ge, med aspekter af artens ynglebiologi ubeskrevet for den grønl<strong>and</strong>ske<br />

best<strong>and</strong>s vedkommende. Denne afh<strong>and</strong>l<strong>in</strong>g præsenterer ny viden for<br />

havternen både på en <strong>in</strong>ternational skala, såvel som på en national skala.<br />

Først og fremmest er studiet af havternens træk (Manus I) – det længste<br />

træk registreret hos noget dyr – et studie med <strong>in</strong>ternational appel. Studiet<br />

dokumenterer hvorledes terner, der yngler i Nordøstgrønl<strong>and</strong> og Isl<strong>and</strong>,<br />

gennemfører trækket til Weddell Havet ved Antarktis, og tilbage igen.<br />

Alene den tilbagelagte distance (gennemsnitlig 71.000 km) er <strong>in</strong>teressant,<br />

men studiet kunne også dokumentere, hvordan ternerne under deres lange<br />

træk er afhængige af havområder med særlig høj biologisk produktion.<br />

På det sydgående træk stopper fuglene trækket og opholder sig i næsten<br />

en måned (25 dage i gennemsnit) i den centrale del af Nordatlanten, før<br />

de fortsætter mod syd. Tæt ved Ækvator (~10º N) opstår en opdel<strong>in</strong>g af<br />

trækvejen: Af 11 mærkede <strong>in</strong>divider fortsætter syv langs Afrikas kyst,<br />

mens fi re <strong>in</strong>divider krydser Atlanten, for at fortsætte langs østkysten af<br />

Sydamerika. Det nordgående træk fra v<strong>in</strong>terkvarteret til ynglepladserne<br />

blev gennemført med særlig høj hastighed (gennemsnitligt 520 km per<br />

dag) og fulgte en rute med favorable v<strong>in</strong>dretn<strong>in</strong>ger.<br />

Denne afh<strong>and</strong>l<strong>in</strong>g <strong>in</strong>deholder også det første kvantifi cerede estimat af<br />

havternens evne til at producere et såkaldt omlægskuld – et erstatn<strong>in</strong>gskuld<br />

hvis første kuld går tabt (Manus II og III). På trods af, at det <strong>of</strong>te nævnes<br />

i litteraturen at havternen villigt omlægger, er dette studie det første<br />

der overvåger det reproduktive respons på eksperimentalt manipulerede<br />

ynglepar. Vi f<strong>and</strong>t, at omtrent halvdelen (53,3 %) af fuglene producerede<br />

et omlægskuld, når det første kuld blev fjernet i den sidste del af rugeperioden.<br />

Overraskende viste det sig, at vækstrater og overlevelse hos unger<br />

fra omlægskuldene ikke var forskellige fra unger opfostret fi re uger tidligere,<br />

på trods af, at et skifte i både fourager<strong>in</strong>gsmønster og størrelse af<br />

byttedyr kunne identifi ceres (Manus III).<br />

Af mere national <strong>in</strong>teresse producerede studierne i forb<strong>in</strong>delse med afh<strong>and</strong>l<strong>in</strong>gen<br />

de første undersøgelser af havternens fødevalg i Grønl<strong>and</strong>.<br />

På trods af at fl ere forskellige fi ske- og zooplanktonarter var til stede i den<br />

føde der blev bragt til ungerne i Disko Bugt, Vestgrønl<strong>and</strong>, viste det sig,<br />

at lodde (Mallotus villosus) var nøglefødearten for alle aldersgrupper af<br />

unger (Manus III).<br />

Afh<strong>and</strong>l<strong>in</strong>gen omh<strong>and</strong>ler også et studie af den fl uktuerende yngleforekomst<br />

som forekommer hos havternen (Manus IV). Selv om havternen<br />

udviser en overordnet tr<strong>of</strong>asthed mod yngleregionen, viste vores studier,<br />

at der forekommer en betydelig variation i antallet af ynglefugle i kolonien<br />

mellem sæsonerne i de små og mellemstore kolonier i Disko Bugtområdet.<br />

Disse variationer er s<strong>and</strong>synligvis koblet til lokalt forekommen-<br />

11


Figure 2. An <strong>Arctic</strong> tern nest at<br />

the barren S<strong>and</strong> Isl<strong>and</strong>, High-arctic<br />

Northeast Greenl<strong>and</strong>, where<br />

fi eldwork was conducted <strong>in</strong> 2007<br />

<strong>and</strong> 2008.<br />

12<br />

de fænomener, eksempelvis forstyrrelse fra prædatorer, mere end de er<br />

forklaret af forhold der forekommer på større skala.<br />

Gennem de lange perioder, tilbragt i havternekolonierne i forb<strong>in</strong>delse<br />

med feltarbejdet, var det muligt at dokumentere det positive yngleforhold<br />

mellem havterner og <strong>and</strong>re ynglende v<strong>and</strong>fugle. I et studie udført<br />

på ynglende thors- og od<strong>in</strong>shane (Phalaropus fulucarius og P. lobatus) på<br />

Kitsissunnguit (Manus V), kunne et tæt adfærdsmæssigt respons på havternens<br />

advarselskald identifi ceres. Disse resultater s<strong>and</strong>synliggør, at den<br />

observerede ændrede fordel<strong>in</strong>g af svømmesnepper på Kitsissunnguit følger<br />

havternens udbredelse på øerne, som foreslået af Egevang et al. 2004.<br />

Afh<strong>and</strong>l<strong>in</strong>gen <strong>in</strong>deholder desuden resultater møntet på de grønl<strong>and</strong>ske<br />

forvaltn<strong>in</strong>gsmyndigheder. Foruden estimater af ynglebest<strong>and</strong>en i de to<br />

vigtigste havternekolonier i Vest- og Nordøstgrønl<strong>and</strong>, præsenteres anbefal<strong>in</strong>ger<br />

til hvordan en fremtidig bæredygtig udnyttelse af havterneægsaml<strong>in</strong>g<br />

kan tænkes udført (Manus II), og konkrete forslag til hvordan<br />

overvågn<strong>in</strong>gen af havternekolonierne i Grønl<strong>and</strong> kan udføres (Manus IV).


Eqikkaaneq<br />

Ilisimatuutut allaatigisaq manna imeqqutaallanik (Sterna paradisaea) 2002-<br />

2008-mi misissu<strong>in</strong>erit <strong>in</strong>erner<strong>in</strong>ik saqqummiussivoq. Allaatigisamut<br />

atatillugu paasissutissat Kalaallit Nunaanni piffi nni marluusuni: Kitsissunnguit,<br />

Qeqertarsuup Tunuani Kitaata issittortaani aamma S<strong>and</strong>øenimi<br />

Tunup avannaani issittorsuarmi, misissuiartornikkut katersorneqarsimapput.<br />

Kalaallit Nunaanni imeqqutaalaq pillugu 2002 sioqqullugu ilisimasanut<br />

tunngaviusut annikitsu<strong>in</strong>naasimapput, pissuseqatigiit nunats<strong>in</strong>ni uumasuusut<br />

k<strong>in</strong>guaassiornikkut pissusaat arlalitsigut nassuiarneqarsimanatik.<br />

Allaatigisaq manna imeqqutaalaq pillugu paasisanik nutaanik nunap iluani<br />

nunallu tamat akornanni nallersuuss<strong>in</strong>naasunik saqqummiussivoq.<br />

Siullertut p<strong>in</strong>gaarnertullu imeqqutaallap <strong>in</strong>gerlaartarnera pillugu misissu<strong>in</strong>eq<br />

(Manus I) – uumasuni tamani <strong>in</strong>gerlaarnerit nalunaarsorneqarsimasut<br />

tannersaat – misissu<strong>in</strong>eruvoq nunat tamat akornanni soqutig<strong>in</strong>aateqartussaq.<br />

Misissu<strong>in</strong>erup nassuiarpaa qanoq imeqqutaallat Tunup<br />

avannaaniit Isl<strong>and</strong>imiillu, Sikuiuitsumi kujallermiittumut Weddelip Imartaanut,<br />

utimullu, <strong>in</strong>gerlaartarnersut. Ingerlaarnerup takissusaa imm<strong>in</strong>i<br />

(agguaqatigiissillugu 71.000 km) soqutig<strong>in</strong>arpoq, misissu<strong>in</strong>erulli aamma<br />

nassuiarpaa, qanoq imeqqutaallat <strong>in</strong>gerlaarnermi nalaanni imartat immikkut<br />

p<strong>in</strong>ngorarfi ulluartut p<strong>in</strong>ngitsoors<strong>in</strong>naanngikkaat. Kujammut <strong>in</strong>gerlaarnerm<strong>in</strong>ni<br />

timmissat qaammat<strong>in</strong>gajammik (agguaqatigiissillugu<br />

ulluni 25-ni) sivisussusilimmik <strong>in</strong>gerlaarnertik unitsittarpaat Atlantikullu<br />

avannaata qiterpasissuani, kujammut <strong>in</strong>gerlaqq<strong>in</strong>ng<strong>in</strong>nerm<strong>in</strong>ni, un<strong>in</strong>ngaartarlutik.<br />

Ækvatorip qanittuani (~10º N) <strong>in</strong>gerlaarnerup aqqutaani<br />

avissaarfeqartarpoq: Nalunaaqutserneqarsimasuni 11-usuni arfi neq<br />

marluk Afrikap s<strong>in</strong>eriaa atuarlugu <strong>in</strong>gerlaqqipput, sisamallu Atlantiku<br />

ikaarlugu Amerikkap kujalliup s<strong>in</strong>eriaa atuarlugu <strong>in</strong>gerlaqqiffi galugu.<br />

Avannamut ukiivimmiit piaqqisarfi mmut <strong>in</strong>gerlaarneq sukkangaatsiartumik<br />

<strong>in</strong>gerlavoq (agguaqatigiissillugu ullormut 520 km) <strong>in</strong>gerlaarfi llu iluaqutaasunik<br />

sammivil<strong>in</strong>nik anoreqarfi usoq atuarsimallugu.<br />

Allaaserisap massuma aamma imarivaa imeqqutaallap mannilioqqiss<strong>in</strong>naaneranik<br />

– piaqq<strong>in</strong>erit/manniliornerit siulliit iluats<strong>in</strong>ngippata mannilioqqiss<strong>in</strong>naaneq<br />

- kisitsis<strong>in</strong>ngorlugu miss<strong>in</strong>gersu<strong>in</strong>erit siullersaat<br />

(Manus II aamma III). Naak allaatigisani imeqqutaallat ajornasaaratik<br />

mannilioqqittarnerarlugit oqaatig<strong>in</strong>iarneqartaraluartut, misissu<strong>in</strong>erup<br />

massuma, aappariit piaqqisut misileraatigalugit uukapaat<strong>in</strong>neqartut<br />

k<strong>in</strong>guaassiornikkut qisuariarnerannik nakkutig<strong>in</strong>n<strong>in</strong>nerit siullersaraat.<br />

Paasivarput, timmissat affaasa missaat (53,3 %) ivanerup naggataata tungaani<br />

manniliaat peerneqaraangata mannilioqqittartut. Tupaallannartumik<br />

paas<strong>in</strong>arsivoq, piaqqat mannilioqq<strong>in</strong>nerniit tukersimasut alliartornerat<br />

umaannars<strong>in</strong>naanerallu piaqqanit sapaatit akunner<strong>in</strong>i sisamani<br />

sius<strong>in</strong>nerusukkut allisarsimasun<strong>in</strong>ngarnit allaanerunngitsut, naak, ner<strong>in</strong>iarnikkut<br />

p<strong>in</strong>iagaasalu angissusiisigut allaanerussutit ilisar<strong>in</strong>eqars<strong>in</strong>naasimagaluartut<br />

(Manus III).Nunap iluani soqutig<strong>in</strong>aateqarnertut allaatigisamut<br />

atatillugu imeqqutaallat Kalaallit Nunaanni ner<strong>in</strong>iartagaannik<br />

misissu<strong>in</strong>erit siulliit suliar<strong>in</strong>eqarput. Naak aalisakkat uumasuaqqallu<br />

iker<strong>in</strong>narsiortut assigi<strong>in</strong>ngitsut arlallit Kitaani, Qeqertarsuup Tunuani<br />

piaqqanut apuunneqartartunut ilaagaluartut, paas<strong>in</strong>arsivoq ammassak<br />

(Mallotus villosus) piaqqani tamanik angissuseqartuni nerisassat p<strong>in</strong>gaarnersarigaat<br />

(Manus III).<br />

13


Figure 3. Map <strong>of</strong> study areas<br />

where fi eld work <strong>in</strong> the thesis<br />

were conducted. Inset map <strong>in</strong> upper<br />

left corner shows the location<br />

<strong>of</strong> A) Kitsissunnguit <strong>in</strong> Disko Bay<br />

<strong>and</strong> B) <strong>of</strong> S<strong>and</strong> Isl<strong>and</strong> <strong>in</strong> Northeast<br />

Greenl<strong>and</strong>. The map scale<br />

(lower right corner) applies to<br />

both A <strong>and</strong> B<br />

14<br />

Allaatigisami aamma samm<strong>in</strong>eqarput imeqqutaallat piaqqiortartut amerlassutsimikkut<br />

ilaatigut allanngorartarnerisa, misissuiffi g<strong>in</strong>eqarnerat<br />

(Manus IV). Naak imeqqutaalaq piaqqisarfi mm<strong>in</strong>ut amerlanertigut aalajaattaraluartoq,<br />

misissu<strong>in</strong>itta takutippaat, Qeqertarsuup Tunuani piaqqisarfi<br />

nni m<strong>in</strong>nerni akunnattunilu timmissat piaqqisut piaqq<strong>in</strong>ermiit piaqq<strong>in</strong>ermut<br />

malunnaatilimmik allanngorartut. Allanngorarnerit tamakku<br />

piffi mmi annikitsumi pisunut attuumassuteqarnissaat ilimanaateqarput,<br />

assersuutigalugu kiisortunit akornusersorneqarneq, piffi mmilu annertunerusumi<br />

pisut nassuiaataas<strong>in</strong>naanerat ilimanaateqanng<strong>in</strong>nerulluni.<br />

Imeqqutaalaqarfi nnut misissuiartortarnerni sivisoqisuni, imeqqutaallat<br />

timmissallu naluusillit piaqqisut allat imm<strong>in</strong>nut iluaqusersoqatigiittarneri<br />

nalunaarsorneqars<strong>in</strong>naasimapput. Naluumasortut Kajuaqqallu<br />

(Phalaropus fulucarius aamma P. lobatus) piaqqisut Kitsissunnguani misissuiffi<br />

g<strong>in</strong>erisigut (Manus V), imeqqutaallat kalerrisaar<strong>in</strong>er<strong>in</strong>ut qisuariaatit<br />

ersarissut ilisar<strong>in</strong>eqars<strong>in</strong>naasimapput. Inernerit taakkua qularnaallisippaat,<br />

naluumasortukkut Kitsissunnguani siammarsimaffi mmikkut<br />

allannguutaasa imeqqutaallat qeqertani sumi<strong>in</strong>neri malittarigaat, soorlu<br />

Egevang et al. 2004-mi siunnersuutig<strong>in</strong>eqarsimasoq.<br />

Allaatigisap aamma imarai <strong>in</strong>ernerit Kalaallit Nunaanni oqartussanut<br />

saaffi g<strong>in</strong>nittut. Kitaani Tunullu avannaani imeqqutaalaqarfi nni p<strong>in</strong>gaarnerpaani<br />

piaqqisut amerlassusaannik miss<strong>in</strong>gersu<strong>in</strong>erit saniatigut, siunissami<br />

piujuartitsilluni imeqqutaallanik manissarluni atuis<strong>in</strong>naanermik<br />

<strong>in</strong>assuteqaatit saqqummiunneqarput (Manus II), Kalaallillu Nunaanni<br />

imeqqutaalaqarfi it nakkutig<strong>in</strong>eqars<strong>in</strong>naanerannut tigussaasunik siunnersuuteqartoqarluni<br />

(Manus IV).


1 Synopsis<br />

1.1 Introduction<br />

There are several compell<strong>in</strong>g reasons to study the migration <strong>and</strong> <strong>breed<strong>in</strong>g</strong><br />

<strong>biology</strong> <strong>of</strong> the <strong>Arctic</strong> tern <strong>in</strong> Greenl<strong>and</strong>. From a global perspective, the<br />

<strong>Arctic</strong> tern is the very epitome <strong>of</strong> long-distance migration <strong>in</strong> birds, <strong>and</strong><br />

no other animal species connects the two Polar Regions, as the <strong>Arctic</strong> tern<br />

does. Thus, the study <strong>of</strong> <strong>Arctic</strong> tern migration is not only an exam<strong>in</strong>ation<br />

<strong>of</strong> migrat<strong>in</strong>g animals at the edge <strong>of</strong> their physical performance, it is also an<br />

exploration <strong>of</strong> a species mov<strong>in</strong>g through a vast proportion <strong>of</strong> the world’s<br />

mar<strong>in</strong>e areas <strong>in</strong> a s<strong>in</strong>gle calendar year, experienc<strong>in</strong>g a rapidly chang<strong>in</strong>g<br />

environment with altered forag<strong>in</strong>g opportunities on both the <strong>breed<strong>in</strong>g</strong><br />

<strong>and</strong> w<strong>in</strong>ter<strong>in</strong>g grounds.<br />

At a local scale, no other bird species <strong>in</strong> Greenl<strong>and</strong> encapsulates the feel<strong>in</strong>g<br />

<strong>of</strong> summer <strong>in</strong> the <strong>Arctic</strong>. The cry <strong>of</strong> the <strong>Arctic</strong> tern is for many <strong>in</strong> Greenl<strong>and</strong><br />

the ultimate sign <strong>of</strong> the end <strong>of</strong> a long w<strong>in</strong>ter <strong>and</strong> the onset <strong>of</strong> summer,<br />

the return <strong>of</strong> the sun <strong>and</strong> warmer temperatures. Although tern eggs<br />

are small <strong>and</strong> may not contribute much as a source <strong>of</strong> prote<strong>in</strong>, the habit <strong>of</strong><br />

harvest<strong>in</strong>g <strong>Arctic</strong> tern eggs <strong>in</strong> summer has a long tradition <strong>in</strong> Greenl<strong>and</strong>,<br />

<strong>and</strong> is considered one <strong>of</strong> the highlights <strong>of</strong> the summer season. There is no<br />

doubt that, to the people <strong>of</strong> Greenl<strong>and</strong>, the <strong>Arctic</strong> tern has a special status<br />

amongst birds.<br />

From a more scientifi c po<strong>in</strong>t <strong>of</strong> view, the <strong>Arctic</strong> tern is <strong>in</strong>terest<strong>in</strong>g to study<br />

due to its obvious appearance on the l<strong>and</strong>scape <strong>and</strong> the placement <strong>of</strong><br />

its nest directly on the ground. This makes the species relatively easy to<br />

study, compared with many other seabird species, where the nest is concealed<br />

<strong>in</strong> a rocky crevice or burrow, or on rocky ledges <strong>of</strong> high steep cliffs.<br />

Furthermore, the <strong>Arctic</strong> tern is a surface feeder <strong>and</strong> only capable <strong>of</strong> forag<strong>in</strong>g<br />

<strong>in</strong> the top half meter <strong>of</strong> the water column. Theoretically, this twodimensional<br />

feed<strong>in</strong>g niche makes the species more vulnerable to changes<br />

<strong>in</strong> prey availability, <strong>and</strong> a direct response <strong>in</strong> <strong>breed<strong>in</strong>g</strong> performance can be<br />

detected with<strong>in</strong> a <strong>breed<strong>in</strong>g</strong> season.<br />

From an environmental management perspective, the <strong>Arctic</strong> tern is <strong>in</strong>terest<strong>in</strong>g<br />

because <strong>of</strong> its function as a “biodiversity generator”. Smaller species,<br />

such as shorebirds, apparently benefi t from the agonistic behaviour<br />

<strong>of</strong> the <strong>Arctic</strong> tern, <strong>and</strong> <strong>in</strong>creased <strong>breed<strong>in</strong>g</strong> densities <strong>of</strong> other species are<br />

<strong>of</strong>ten found with<strong>in</strong> the boundaries <strong>of</strong> an <strong>Arctic</strong> tern colony (Nguyen et al.<br />

2006, Egevang et al. 2008, Egevang et al. 2004, Egevang et al. 2006).<br />

The Greenl<strong>and</strong> Institute <strong>of</strong> Natural Resources generates specifi c knowledge<br />

on the Greenl<strong>and</strong> mar<strong>in</strong>e <strong>and</strong> terrestrial fauna to provide the Greenl<strong>and</strong><br />

Government with management advice on the susta<strong>in</strong>able use <strong>of</strong> liv<strong>in</strong>g<br />

resources. In Greenl<strong>and</strong>, there is a long traditional <strong>of</strong> bird harvest<strong>in</strong>g,<br />

<strong>and</strong> research on seabirds has ma<strong>in</strong>ly focused on the two most harvested<br />

species, Brünnich’s Guillemot (Uria lomvia) <strong>and</strong> Common Eider (Somateria<br />

mollissima), with little attention directed towards other harvested species,<br />

such as the <strong>Arctic</strong> tern. As monitor<strong>in</strong>g programmes for guillemots <strong>and</strong> eiders<br />

developed over the last decade, opportunities to exp<strong>and</strong><strong>in</strong>g research<br />

activities <strong>of</strong> GINR (to species like little auks, black-legged kittiwakes, <strong>and</strong><br />

<strong>Arctic</strong> <strong>terns</strong>) arose.<br />

15


16<br />

1.2 Objectives<br />

Aim <strong>of</strong> the thesis: The <strong>in</strong>itial aims <strong>of</strong> <strong>and</strong> motivations for my research<br />

were to illum<strong>in</strong>ate a number <strong>of</strong> issues regard<strong>in</strong>g the <strong>biology</strong> <strong>of</strong> the <strong>Arctic</strong><br />

tern <strong>in</strong> Greenl<strong>and</strong>, particularly from a management perspective. Basic<br />

questions, like “What is the current status <strong>of</strong> the <strong>Arctic</strong> tern population<br />

<strong>in</strong> Greenl<strong>and</strong> ?”, “What is the key prey species for <strong>Arctic</strong> <strong>terns</strong> <strong>in</strong> Greenl<strong>and</strong><br />

?” <strong>and</strong> “Do <strong>Arctic</strong> <strong>terns</strong> relay <strong>in</strong> the <strong>Arctic</strong> ?” were unanswered. Later<br />

<strong>in</strong> the process, technological advances rapidly reduced the mass <strong>of</strong> geolocators,<br />

<strong>and</strong> allowed the <strong>Arctic</strong> tern to be targeted as a study subject, <strong>and</strong><br />

the focus <strong>of</strong> my research broadened to also <strong>in</strong>clude this aspect.<br />

Aim <strong>of</strong> the synopsis: The aim <strong>of</strong> this synopsis is to present background<br />

<strong>in</strong>formation on the <strong>biology</strong> <strong>of</strong> the <strong>Arctic</strong> tern <strong>and</strong> highlight how the results<br />

<strong>of</strong> this work have contributed to an improved underst<strong>and</strong><strong>in</strong>g <strong>of</strong> this<br />

species, either globally or specifi cally <strong>in</strong> Greenl<strong>and</strong>. In this context, the<br />

synopsis also <strong>in</strong>cludes results generated dur<strong>in</strong>g the course <strong>of</strong> my research,<br />

but not presented <strong>in</strong> the manuscripts – especially those relat<strong>in</strong>g to issues<br />

specifi c to Greenl<strong>and</strong>.<br />

1.3 Distribution<br />

The <strong>Arctic</strong> tern has a circumpolar distribution between the Boreal <strong>and</strong><br />

High <strong>Arctic</strong> zones. The <strong>breed<strong>in</strong>g</strong> range <strong>in</strong> Greenl<strong>and</strong> is large (more than<br />

350,000 km 2 ), <strong>and</strong> the species is found <strong>breed<strong>in</strong>g</strong> <strong>in</strong> a variety <strong>of</strong> habitats.<br />

In Greenl<strong>and</strong>, <strong>Arctic</strong> <strong>terns</strong> are found <strong>breed<strong>in</strong>g</strong> throughout the country. In<br />

West Greenl<strong>and</strong>, the <strong>Arctic</strong> tern shows a patchy distribution with large<br />

gaps evident. The core <strong>breed<strong>in</strong>g</strong> areas are <strong>in</strong> Disko Bay <strong>and</strong> <strong>in</strong> Upernavik<br />

District (Boertmann et al. 1996, Egevang <strong>and</strong> Boertmann 2003). In East<br />

Greenl<strong>and</strong>, the colonies are fewer, more scattered, <strong>and</strong> smaller than <strong>in</strong><br />

West Greenl<strong>and</strong>. Typically, colonies <strong>in</strong> Greenl<strong>and</strong> are found at small, isolated<br />

islets along the coast, <strong>and</strong> range from a few tens <strong>of</strong> pairs to a few<br />

hundred pairs. Large colonies <strong>of</strong> more than 2,000 pairs are rare, <strong>and</strong> even<br />

solitary <strong>breed<strong>in</strong>g</strong> has been recorded <strong>in</strong> Greenl<strong>and</strong> (Boertmann 1994).<br />

1.4 Population status <strong>in</strong> Greenl<strong>and</strong><br />

The total world population <strong>of</strong> <strong>Arctic</strong> <strong>terns</strong> is estimated at 1 to 2 million<br />

pairs (Lloyd et al. 1991). Global estimates <strong>of</strong> the <strong>Arctic</strong> tern population are<br />

rough, however, <strong>and</strong> some large populations (e.g. <strong>in</strong> Russia <strong>and</strong> Alaska<br />

are diffi cult to estimate (Wetl<strong>and</strong>s International 2006).<br />

Prior to 2002, there was little effort to monitor the <strong>Arctic</strong> tern population<br />

<strong>in</strong> Greenl<strong>and</strong>. Counts were opportunistic <strong>and</strong> only performed <strong>in</strong> s<strong>in</strong>gle<br />

years. The total <strong>Arctic</strong> tern population <strong>in</strong> Greenl<strong>and</strong> is estimated to <strong>in</strong>clude<br />

at least 65,000 pairs (Egevang <strong>and</strong> Boertmann 2003), but limited data<br />

is available. However, three studies provide <strong>in</strong>formation that can be used<br />

to address population status: Salomonsen (1950) visited Kitsissunnguit,<br />

the largest <strong>Arctic</strong> tern colony <strong>in</strong> Greenl<strong>and</strong>, for a short (1 ½ day) period <strong>in</strong><br />

1949, <strong>and</strong> estimated the population to be 100,000 pairs. This high number<br />

<strong>of</strong> <strong>breed<strong>in</strong>g</strong> birds has never been encountered aga<strong>in</strong> <strong>in</strong> censuses conduct-


ed between 1980 <strong>and</strong> 2009, where estimates range from 0 to 25,000 pairs<br />

(Kampp 1980, Frich 1997, Hjarsen 2000, Egevang et al. 2004, Manus IV).<br />

Burnham et al. (2005) revisited <strong>Arctic</strong> tern colonies censured <strong>in</strong> Uummannaq<br />

District by Berthelsen (1921) <strong>in</strong> the period 1905 to 1920, to fi nd that<br />

population numbers had decl<strong>in</strong>ed to less than one-third between counts.<br />

Egevang <strong>and</strong> Boertmann (2003) compared <strong>Arctic</strong> tern colony counts <strong>in</strong><br />

the Greenl<strong>and</strong> Seabird Colony Database (GSCD) between 1921 <strong>and</strong> 2002,<br />

<strong>and</strong> concluded that a long-term decl<strong>in</strong>e was present, but the population<br />

seemed to stabilize <strong>in</strong> more recent counts, between 1986 <strong>and</strong> 2002.<br />

Although the above studies provide only circumstantial evidence <strong>of</strong> a decl<strong>in</strong>e,<br />

it seems reasonable to conclude that the <strong>Arctic</strong> tern population <strong>in</strong><br />

Greenl<strong>and</strong> has undergone a decl<strong>in</strong>e s<strong>in</strong>ce the middle <strong>of</strong> the last century.<br />

However, the magnitude <strong>of</strong> this decl<strong>in</strong>e is diffi cult to quantify <strong>and</strong> attempts<br />

to estimate the historical population size should be treated with caution.<br />

The <strong>Arctic</strong> tern is categorized as “near threatened” <strong>in</strong> the Greenl<strong>and</strong> Red<br />

List (Boertmann 2007).<br />

1.5 Population status at Kitsissunnguit<br />

The <strong>Arctic</strong> tern population at Kitsissunnguit has been followed with special<br />

<strong>in</strong>terest by both managers <strong>in</strong> Greenl<strong>and</strong> <strong>and</strong> <strong>in</strong>ternational, non-government<br />

environmental organisations. The archipelago is home to one <strong>of</strong><br />

the largest <strong>Arctic</strong> tern colonies <strong>in</strong> the world, <strong>and</strong> has been designated both<br />

as a Ramsar site, a special protected area for <strong>breed<strong>in</strong>g</strong> birds <strong>in</strong> national<br />

legislation, <strong>and</strong> an Important Bird Area (IBA). Despite these designations,<br />

there was little effort to monitor the <strong>Arctic</strong> tern population <strong>in</strong> a systematic<br />

way prior to 2002. The sparse historical <strong>in</strong>formation on population size<br />

available from Kitsissunnguit <strong>in</strong>dicated a crash <strong>in</strong> the population, with<br />

numbers go<strong>in</strong>g from 100,000 pairs <strong>in</strong> 1949 (Salomonsen 1950) to no <strong>breed<strong>in</strong>g</strong><br />

birds <strong>in</strong> 2000 (Hjarsen 2000), <strong>and</strong> a great concern arose with<strong>in</strong> government<br />

<strong>and</strong> non-governmental <strong>in</strong>stitutions.<br />

The Greenl<strong>and</strong> Institute <strong>of</strong> National Resources <strong>in</strong>troduced a modifi ed distance<br />

sampl<strong>in</strong>g <strong>and</strong> l<strong>in</strong>e transect method to estimate population size at<br />

Kitsissunnguit <strong>in</strong> 1996 (Frich 1997), <strong>and</strong> annual counts were performed<br />

between 2002 <strong>and</strong> 2006 (Manus IV). This series <strong>of</strong> consecutive population<br />

estimates showed that the <strong>Arctic</strong> <strong>terns</strong> at Kitsissunnguit had not suffered<br />

a complete population crash, <strong>and</strong> found <strong>breed<strong>in</strong>g</strong> numbers to be relatively<br />

stable between 15,000 <strong>and</strong> 22,000 pairs (Manus IV). Although these estimates<br />

are not <strong>in</strong> the same magnitude as the former estimate by Salomonsen<br />

<strong>in</strong> the mid 20th century, it is with<strong>in</strong> the same magnitude as the<br />

estimate <strong>of</strong> roughly 25,000 pairs by Kampp et al. <strong>in</strong> 1980.<br />

1.6 Fluctuat<strong>in</strong>g <strong>breed<strong>in</strong>g</strong><br />

The <strong>Arctic</strong> tern is <strong>of</strong>ten referred to as a species with fl uctuat<strong>in</strong>g colony<br />

attendance, large variation <strong>in</strong> <strong>breed<strong>in</strong>g</strong> numbers, <strong>and</strong> years <strong>of</strong> skipped<br />

<strong>breed<strong>in</strong>g</strong> (Manus IV). Breed<strong>in</strong>g site fi delity at a regional level is high <strong>in</strong><br />

<strong>Arctic</strong> <strong>terns</strong>, but dispersal to neighbour<strong>in</strong>g <strong>breed<strong>in</strong>g</strong> colonies occurs frequently<br />

(Devl<strong>in</strong> et al. 2008, Møller et al. 2006, Br<strong>in</strong>dley et al. 1999, Ratcliffe<br />

17


18<br />

2004). Although poorly understood <strong>and</strong> documented <strong>in</strong> the literature, it<br />

is important to address whether variations <strong>in</strong> colony size may be caused<br />

by locally occurr<strong>in</strong>g phenomena, such as predation <strong>and</strong> disturbance, or if<br />

these variations are l<strong>in</strong>ked to large scale events, such as food availability<br />

or climatic variations. In order to make sense <strong>of</strong> counts at <strong>Arctic</strong> tern colonies<br />

where variation occurs, it is important to underst<strong>and</strong> the scale (from<br />

with<strong>in</strong>-colony to regional scale) at which variations <strong>in</strong> colony attendance<br />

occur. A particular comb<strong>in</strong>ation <strong>of</strong> factors makes it diffi cult to address<br />

population size, status, <strong>and</strong> trends <strong>in</strong> <strong>Arctic</strong> <strong>terns</strong> (Ratcliffe 2004). This is<br />

most pronounced <strong>in</strong> the <strong>Arctic</strong> zone where <strong>Arctic</strong> tern <strong>breed<strong>in</strong>g</strong> sites may<br />

be diffi cult to access <strong>and</strong> colonies can be widely distributed.<br />

In addition to estimates <strong>of</strong> population size from the two study sites, Kitsissunnguit<br />

(2002-2006) <strong>and</strong> S<strong>and</strong> Isl<strong>and</strong> (2006-2009), it was possible to conduct<br />

annual counts <strong>in</strong> 14 <strong>Arctic</strong> tern colonies <strong>in</strong> the southern part <strong>of</strong> Disko<br />

Bay (the Akunnaaq area) <strong>in</strong> the period 2002-2005 (Manus IV). Considerable<br />

fl uctuation was found between years <strong>in</strong> these small <strong>and</strong> mid-sized<br />

colonies (mean CV <strong>of</strong> <strong>in</strong>dividual colonies equalled 117.5 %), whereas the<br />

colonies at Kitsissunnguit only showed m<strong>in</strong>or annual variation (47.4 % at<br />

sub-colony level, 14.6 % at overall level). When comb<strong>in</strong>ed, however, the<br />

total population size <strong>of</strong> the Disko Bay colonies (more that 80 % <strong>of</strong> the Artic<br />

tern colonies <strong>in</strong> Disko Bay), varied little (CV 6.7 %), <strong>in</strong>dicat<strong>in</strong>g local<br />

movements between the colonies <strong>and</strong> that annual variation was l<strong>in</strong>ked to<br />

locally occurr<strong>in</strong>g phenomena.<br />

Variation at high-arctic S<strong>and</strong> Isl<strong>and</strong> was even more pronounced, with complete<br />

<strong>breed<strong>in</strong>g</strong> failures recorded <strong>in</strong> two out <strong>of</strong> four seasons (Manus IV).<br />

1.7 Plausible cause <strong>of</strong> decl<strong>in</strong>e <strong>in</strong> population size<br />

<strong>Arctic</strong> tern populations <strong>in</strong> Greenl<strong>and</strong> are affected by numerous factors regulat<strong>in</strong>g<br />

population size <strong>and</strong> the observed long-term decl<strong>in</strong>e is likely to be<br />

caused by more than one factor. <strong>Arctic</strong> foxes (Alopex lagopus) are known to<br />

cause devastat<strong>in</strong>g predation when they are able to access a colony (Bianki<br />

<strong>and</strong> Isaksen 2000, Manus IV), <strong>and</strong> multiple avian predators are known to<br />

depredate egg, chicks, <strong>and</strong>, to a lesser degree, adult <strong>Arctic</strong> <strong>terns</strong> (Cramp<br />

1985, Hatch 2002). Although these predators have always been present <strong>in</strong><br />

Greenl<strong>and</strong>, local Inuit claim that the number <strong>of</strong> predators <strong>in</strong> Greenl<strong>and</strong><br />

has <strong>in</strong>creased, caus<strong>in</strong>g <strong>terns</strong> to decl<strong>in</strong>e. Although the relationship between<br />

food availability <strong>and</strong> reproductive performance <strong>in</strong> <strong>Arctic</strong> <strong>terns</strong> <strong>in</strong> Greenl<strong>and</strong><br />

is poorly documented, the study on chick diet <strong>and</strong> chick survival at<br />

Kitsissunnguit (Table 2, Manus III) <strong>in</strong>dicates that productivity is low compared<br />

with other studies abroad (Appendix I <strong>in</strong> Hatch 2002). Food shortage<br />

or <strong>in</strong>accessibility <strong>of</strong> suitable prey items can occur <strong>in</strong> Greenl<strong>and</strong> waters<br />

<strong>and</strong> may affect the ability <strong>of</strong> <strong>Arctic</strong> <strong>terns</strong> to reproduce <strong>in</strong> some years.<br />

In Greenl<strong>and</strong>, harvest<strong>in</strong>g <strong>of</strong> <strong>Arctic</strong> tern eggs for consumption has probably<br />

taken place as long as humans have <strong>in</strong>habited the country (Manus II).<br />

The impact <strong>of</strong> this harvest<strong>in</strong>g was <strong>in</strong>itially constra<strong>in</strong>ed by a small human<br />

population size <strong>and</strong> limited forms <strong>of</strong> transportation. The human population<br />

<strong>in</strong> Greenl<strong>and</strong> has more than quadrupled s<strong>in</strong>ce the 1950’s (Fægteborg<br />

2000), however, <strong>and</strong> the number <strong>and</strong> size <strong>of</strong> motorized boats has <strong>in</strong>creased<br />

rapidly, allow<strong>in</strong>g greater mobility, <strong>and</strong> likely <strong>in</strong>creas<strong>in</strong>g pressure on the<br />

<strong>Arctic</strong> tern population.


The extent <strong>of</strong> the annual egg harvest <strong>in</strong> Greenl<strong>and</strong> rema<strong>in</strong>s undocumented,<br />

although a few references may provide <strong>in</strong>dications <strong>of</strong> its magnitude:<br />

Salomonsen (1950) estimated the annual harvest at Kitsissunnguit to be<br />

as high as 100,000 eggs, while Frich (1997) estimated that 150-200 persons<br />

visited the archipelago between 6 <strong>and</strong> 25 June 1996, <strong>and</strong> harvested between<br />

3,000 <strong>and</strong> 6,000 eggs. S<strong>in</strong>ce 2002, the level <strong>of</strong> (illegal) harvest<strong>in</strong>g has<br />

decl<strong>in</strong>ed at Kitsissunnguit (pers. obs.).<br />

Conservation concerns for the <strong>Arctic</strong> tern population <strong>in</strong> Greenl<strong>and</strong> led to<br />

an altered manag<strong>in</strong>g <strong>of</strong> the resource: from an open season for egg harvest<br />

until 1 July before 2001, a ban on <strong>Arctic</strong> tern harvest<strong>in</strong>g was <strong>in</strong>troduced <strong>in</strong><br />

2002. Egg harvest<strong>in</strong>g <strong>in</strong> Greenl<strong>and</strong> is very much a cultural activity, where<br />

several generations participate <strong>in</strong> gather<strong>in</strong>g eggs dur<strong>in</strong>g summer. The ban<br />

on <strong>Arctic</strong> tern egg harvest<strong>in</strong>g has been met by opposition <strong>in</strong> Greenl<strong>and</strong><br />

where some even consider it a violation <strong>of</strong> basic human rights. S<strong>in</strong>ce 2002,<br />

there has been a considerable pressure on national politicians to re-open<br />

the <strong>Arctic</strong> tern egg harvest season <strong>in</strong> Greenl<strong>and</strong>.<br />

A harvest <strong>of</strong> <strong>Arctic</strong> tern eggs is also carried out <strong>in</strong> Icel<strong>and</strong>, <strong>and</strong>, apparently,<br />

this is conducted without an adverse effect on the population. The egg<br />

harvest <strong>in</strong> Icel<strong>and</strong> differs from the Greenl<strong>and</strong> harvest <strong>in</strong> several ways: <strong>in</strong><br />

Icel<strong>and</strong> the season closes on 15 June, the harvest is only conducted by private<br />

l<strong>and</strong>owners, <strong>and</strong> a high degree <strong>of</strong> predator control (foxes, gulls, <strong>and</strong><br />

ravens) takes place (Aevar Petersen pers. com.).<br />

The outcome <strong>of</strong> a model deal<strong>in</strong>g with egg harvest<strong>in</strong>g at Kitsissunnguit<br />

(Manus II) <strong>in</strong>dicates that a fairly high number <strong>of</strong> eggs could be removed<br />

from the <strong>breed<strong>in</strong>g</strong> population each year as long as egg harvest<strong>in</strong>g is only<br />

conducted early <strong>in</strong> season. The model predicted 7 June as a date for harvest<br />

closure – the date where 92% <strong>of</strong> the maximum number <strong>of</strong> eggs would<br />

be available to harvesters, but the impact on productivity would be m<strong>in</strong>or.<br />

The highest number <strong>of</strong> eggs could be harvested on 16 June, whereas harvest<br />

until 22 June would negatively affect population productivity. Based<br />

on the results <strong>of</strong> the model, high effort egg harvest<strong>in</strong>g until 1 July (as was<br />

the case prior to 2002), is very likely to have placed an unsusta<strong>in</strong>able pressure<br />

on the population, <strong>and</strong> could very well expla<strong>in</strong> the observed decl<strong>in</strong>e.<br />

1.8 Renest<strong>in</strong>g <strong>in</strong> <strong>Arctic</strong> <strong>terns</strong><br />

In order to address the impact <strong>of</strong> egg harvest<strong>in</strong>g on the <strong>Arctic</strong> tern population<br />

<strong>in</strong> Greenl<strong>and</strong>, basic parameters <strong>of</strong> <strong>breed<strong>in</strong>g</strong> <strong>biology</strong> are required<br />

for the species. Although the <strong>Arctic</strong> tern is <strong>of</strong>ten mentioned as a species<br />

that will<strong>in</strong>gly produces a replacement clutch if the fi rst clutch is lost (e.g.<br />

depredated or fl ooded) this is <strong>in</strong> fact very poorly described <strong>in</strong> the literature.<br />

The only scientifi c reference to my knowledge relat<strong>in</strong>g to relay<strong>in</strong>g<br />

<strong>in</strong> <strong>Arctic</strong> <strong>terns</strong> is a paper by Bianki (1967) <strong>in</strong> Russian, quoted by Cramp<br />

(1985) <strong>and</strong> Hatch (2002), show<strong>in</strong>g that relay<strong>in</strong>g only occurs if eggs are lost<br />

dur<strong>in</strong>g the fi rst 10 days <strong>of</strong> the <strong>in</strong>cubation period. Cramp (1985) also states<br />

(without references) that relay<strong>in</strong>g ma<strong>in</strong>ly takes place at lower latitudes,<br />

but is “unlikely <strong>in</strong> the high <strong>Arctic</strong>”. Population dynamic parameters (such<br />

as 1) what proportion <strong>of</strong> the population will relay, 2) at what stage <strong>in</strong> the<br />

<strong>in</strong>cubation period relay<strong>in</strong>g will occur, <strong>and</strong> 3) growth <strong>and</strong> survival rates <strong>of</strong><br />

chicks orig<strong>in</strong>at<strong>in</strong>g from replacement clutches), rema<strong>in</strong> largely unknown<br />

<strong>in</strong> <strong>Arctic</strong> <strong>terns</strong>.<br />

19


20<br />

Renest<strong>in</strong>g <strong>in</strong> <strong>Arctic</strong> <strong>terns</strong> was an important component <strong>in</strong> the fi eldwork at<br />

Kitsissunnguit (Manus II <strong>and</strong> III). By experimentally remov<strong>in</strong>g eggs <strong>and</strong><br />

monitor<strong>in</strong>g the response <strong>of</strong> the <strong>breed<strong>in</strong>g</strong> birds, the fi rst estimates <strong>of</strong> relay<strong>in</strong>g<br />

rate, <strong>and</strong> chick growth <strong>and</strong> survival rates were obta<strong>in</strong>ed for <strong>Arctic</strong> <strong>terns</strong><br />

(Manus III). However, this challenge was not without large logistical diffi<br />

culties. The lay<strong>in</strong>g date <strong>in</strong> <strong>Arctic</strong> <strong>terns</strong> <strong>breed<strong>in</strong>g</strong> <strong>in</strong> Disko Bay varied (see<br />

section “Variation <strong>in</strong> <strong>breed<strong>in</strong>g</strong> phenology”) by as much as three weeks,<br />

mak<strong>in</strong>g the onset <strong>of</strong> fi eldwork diffi cult to plan. If <strong>breed<strong>in</strong>g</strong> <strong>terns</strong> were to<br />

be followed from early <strong>in</strong>cubation, <strong>and</strong> egg removal experiments allow<strong>in</strong>g<br />

the birds to mate, egg formation to take place, an <strong>in</strong>cubation period <strong>of</strong> 22<br />

days, <strong>and</strong> chicks were to be followed until fl edg<strong>in</strong>g, the fi eld season had<br />

to be <strong>of</strong> two to three months <strong>in</strong> duration. In practice, the dem<strong>and</strong>s <strong>of</strong> such<br />

a long fi eld period proved diffi cult to meet, <strong>and</strong> not all aspects <strong>of</strong> renest<strong>in</strong>g<br />

<strong>in</strong> <strong>Arctic</strong> <strong>terns</strong> could be covered with<strong>in</strong> the framework <strong>of</strong> this research.<br />

Despite the fact that eggs were removed <strong>in</strong> the latter half <strong>of</strong> <strong>in</strong>cubation,<br />

<strong>and</strong> past the 10 day period suggested by Bianki (1967), at least 16 out <strong>of</strong> 30<br />

<strong>breed<strong>in</strong>g</strong> pairs (53.3%) at Kitsissunnguit produced a replacement clutch<br />

(Manus III). The clutch size (1.6) at these nests was signifi cantly lower<br />

than <strong>in</strong> control nests (2.1), as was the total Internal Egg Volume (IEV).<br />

None <strong>of</strong> the replacement eggs were relayed <strong>in</strong> the orig<strong>in</strong>al nest cup, but<br />

were <strong>in</strong>stead placed <strong>in</strong> a new nest at an average distance <strong>of</strong> 23.4 meters<br />

from the orig<strong>in</strong>al nest cup.<br />

The results from Kitsissunnguit verify the general perception that <strong>Arctic</strong><br />

<strong>terns</strong> do produce a replacement clutch – even if the eggs are removed<br />

relatively late <strong>in</strong> the <strong>breed<strong>in</strong>g</strong> season. Although the long term impact <strong>of</strong><br />

relay<strong>in</strong>g, such as the post-fl edg<strong>in</strong>g survival <strong>of</strong> chicks, <strong>and</strong> the extra energy<br />

expenditure required <strong>of</strong> adult females, are not accounted for <strong>in</strong> this study,<br />

it does <strong>in</strong>dicate that the birds are cable <strong>of</strong> compensat<strong>in</strong>g for the loss <strong>of</strong><br />

eggs to some extent. The fi nd<strong>in</strong>gs <strong>in</strong> Manus III, where chicks from replacement<br />

clutches did not differ <strong>in</strong> their growth <strong>and</strong> survival (at least to eleven<br />

days), further support this conclusion.<br />

1.9 Variation <strong>in</strong> <strong>breed<strong>in</strong>g</strong> phenology<br />

The fi eldwork at Kitsissunnguit <strong>and</strong> at S<strong>and</strong> Isl<strong>and</strong> also revealed that<br />

<strong>breed<strong>in</strong>g</strong> phenology may vary considerably between years, with considerable<br />

variation <strong>in</strong> egg lay<strong>in</strong>g between <strong>breed<strong>in</strong>g</strong> seasons, as also seen <strong>in</strong><br />

<strong>Arctic</strong> <strong>terns</strong> <strong>in</strong> Shetl<strong>and</strong> (Suddaby <strong>and</strong> Ratcliffe 1997). At Kitsissunnguit,<br />

the majority <strong>of</strong> eggs hatched <strong>in</strong> the fi rst week <strong>of</strong> July (<strong>in</strong>dicat<strong>in</strong>g that egg<br />

lay<strong>in</strong>g took place <strong>in</strong> mid-June), but <strong>in</strong> some years early <strong>breed<strong>in</strong>g</strong> takes<br />

place – as was the case <strong>in</strong> 2004, where eggs hatched three weeks earlier<br />

<strong>in</strong> mid June (Egevang et al. 2005). At S<strong>and</strong> Isl<strong>and</strong>, hatch<strong>in</strong>g took place approximately<br />

two weeks earlier <strong>in</strong> 2008 than <strong>in</strong> 2007, with a broader distribution<br />

<strong>of</strong> hatch<strong>in</strong>g dates observed (Egevang et al. 2008, Egevang <strong>and</strong><br />

Stenhouse 2007).<br />

The onset <strong>of</strong> egg lay<strong>in</strong>g is likely correlated with sea ice conditions <strong>in</strong> <strong>Arctic</strong><br />

regions (Hatch 2002) <strong>and</strong> this may expla<strong>in</strong> the observed variation <strong>in</strong> this<br />

study. The variation <strong>of</strong> up to three weeks difference <strong>in</strong> egg lay<strong>in</strong>g may<br />

have implications for population monitor<strong>in</strong>g at <strong>Arctic</strong> tern colonies. If<br />

pair formation is not completed, fl ush count estimates will underestimate<br />

population numbers. In l<strong>in</strong>e transect estimates (Manus IV), both the count


efore (not all pairs will have laid their eggs) <strong>and</strong> after (eggs will have<br />

hatched <strong>and</strong> chicks not recorded by the observer) the median <strong>in</strong>cubation<br />

period will produce underestimates. Before conduct<strong>in</strong>g counts <strong>in</strong> a given<br />

year it is recommended that the stage <strong>of</strong> <strong>in</strong>cubation is addressed – preferably<br />

by estimat<strong>in</strong>g egg age (Egevang et al. 2005).<br />

1.10 Clutch size<br />

From the study <strong>in</strong> Disko Bay <strong>and</strong> <strong>in</strong> Young Sund (Tab. 1) <strong>in</strong>formation on<br />

average clutch size was obta<strong>in</strong>ed. The distribution <strong>of</strong> one-, two-, <strong>and</strong> threeegg<br />

clutches differed signifi cantly (χ 2 = 126.02, df = 8, p = < 0.001) between<br />

seasons. At high-arctic S<strong>and</strong> Isl<strong>and</strong>, no 3-egg clutches were observed <strong>in</strong><br />

the study plots (nor <strong>in</strong> r<strong>and</strong>om observations) dur<strong>in</strong>g the fi eld seasons <strong>in</strong><br />

2007 <strong>and</strong> 2008, but a difference (χ 2 = 5.99, df = 1, p = < 0.014) <strong>in</strong> the proportion<br />

<strong>of</strong> one- <strong>and</strong> two-egg clutches was identifi ed. The overall clutch size<br />

at S<strong>and</strong> Isl<strong>and</strong> (1.51, SD = 0.50, n = 169) was lower than at Kitsissunnguit<br />

(1.84, SD = 0.50, n = 1752), <strong>and</strong> the distribution <strong>of</strong> one-, two-, <strong>and</strong> three-egg<br />

clutches differed signifi cantly (χ 2 = 66.45, df = 2, p = < 0.001).<br />

From the fi nd<strong>in</strong>gs <strong>in</strong> this study from Greenl<strong>and</strong>, it seems reasonable to<br />

conclude that <strong>in</strong>vestment <strong>in</strong> a 3-egg clutch only occurs on a regular basis<br />

at lower latitudes <strong>in</strong> the <strong>Arctic</strong> zone <strong>and</strong> rarely <strong>in</strong> the High <strong>Arctic</strong>. This<br />

hypothesis supported by a summary <strong>of</strong> clutch sizes found <strong>in</strong> <strong>Arctic</strong> <strong>terns</strong><br />

across North America (Hatch 2002, Appendix 1), where 3-egg clutches are<br />

absent from locations north <strong>of</strong> 70° N.<br />

Table 1. Average clutch size (± St<strong>and</strong>ard Deviation) <strong>and</strong> sample size (n = no. <strong>of</strong> nests) <strong>and</strong><br />

the distribution <strong>of</strong> one-, two-, <strong>and</strong> three-egg clutches <strong>in</strong> <strong>Arctic</strong> tern nests from Kitsissunnguit,<br />

western Greenl<strong>and</strong>, 2002-2006, <strong>and</strong> S<strong>and</strong> Isl<strong>and</strong>, northeast Greenl<strong>and</strong>, 2007-2008.<br />

Location Year Clutch size (SD) Clutch size % (n)<br />

1.11 Hatch<strong>in</strong>g <strong>and</strong> fl edg<strong>in</strong>g success<br />

1 2 3<br />

Kitsissunnguit 2002 1.80 (0.50) n=292 24.3 (71) 72.2 (208) 4.5 (13)<br />

Kitsissunnguit 2003 1.73 (0.45) n=413 26.9 (111) 72.9 (301) 0.2 (1)<br />

Kitsissunnguit 2004 1.76 (0.55) n=446 29.6 (132) 64.6 (288) 5.8 (26)<br />

Kitsissunnguit 2005 1.94 (0.41) n=234 12.0 (28) 82.5 (193) 5.6 (13)<br />

Kitsissunnguit 2006 2.04 (0.49) n=367 9.8 (36) 76.0 (279) 14.2 (52)<br />

S<strong>and</strong> Isl<strong>and</strong> 2007 1.44 (0.50) n=109 56.0 (61) 44.0 (48) 0<br />

S<strong>and</strong> Isl<strong>and</strong> 2008 1.65 (0.50) n=60 35.0 (21) 65.0 (39) 0<br />

Hatch<strong>in</strong>g success (Tab. 2) at Kitsissunnguit did not differ between years<br />

(χ 2 = 0.32, df = 3, p = 0.956), but hatch<strong>in</strong>g success at S<strong>and</strong> Isl<strong>and</strong> <strong>in</strong> 2008<br />

was signifi cantly lower (χ 2 = 4.04, df = 1, p = 0.045) than Kitsissunnguit (all<br />

years comb<strong>in</strong>ed). Fledg<strong>in</strong>g success <strong>in</strong> 2002, 2005, <strong>and</strong> 2006 (2003 data excluded<br />

due to short fi eld season) at Kitsissunnguit did not differ between<br />

years (χ 2 = 0.19, df = 2, p = 0.911), whereas fl edg<strong>in</strong>g success turned out to be<br />

signifi cantly higher at S<strong>and</strong> Isl<strong>and</strong> (χ 2 = 5.06, df = 1, p = 0.0259).<br />

The highest proportion (14.2 %) <strong>of</strong> 3-egg clutches was found <strong>in</strong> 2006 –the<br />

same year the highest average chick survival was encountered. Further-<br />

21


Figure 4. Growth <strong>of</strong> <strong>Arctic</strong> tern<br />

chicks <strong>in</strong> 2005 at Kitsissunnguit,<br />

Disko Bay, West Greenl<strong>and</strong>. The<br />

fi gure shows average mass <strong>and</strong><br />

SE bars <strong>in</strong> chicks (15.2 daily<br />

measurements on average) from<br />

hatch<strong>in</strong>g to fl edgl<strong>in</strong>g. In the l<strong>in</strong>ear<br />

growth period (4-14 days) the<br />

equation describ<strong>in</strong>g daily mass<br />

<strong>in</strong>crease is <strong>in</strong>serted.<br />

22<br />

Table 2. Hatch<strong>in</strong>g success (proportion <strong>of</strong> eggs hatched), fl edg<strong>in</strong>g success (proportion <strong>of</strong><br />

chicks fl edged) <strong>and</strong> productivity (number <strong>of</strong> fl edgl<strong>in</strong>gs per nest) from Kitsissunnguit, western<br />

Greenl<strong>and</strong>, 2002-2006, <strong>and</strong> S<strong>and</strong> Isl<strong>and</strong>, northeast Greenl<strong>and</strong>, 2007-2008.<br />

Location Year Hatch<strong>in</strong>g success a Fledg<strong>in</strong>g success a Productivity (SD) n<br />

Kitsissunnguit 2002 0.90 (n=65) 0.37 (n=59) 0.56 (0.50) n=39<br />

Kitsissunnguit 2003 0.93 (n=54) 0.58b (n=50) 0.58b (0.319) n=24<br />

Kitsissunnguit 2004 * * *<br />

Kitsissunnguit 2005 0.91 (n=46) 0.38 (n=42) 0.75 (0.433) n=20<br />

Kitsissunnguit 2006 0.93 (n=73) 0.43 (n=68) 0.85 (0.595) n=46<br />

S<strong>and</strong> Isl<strong>and</strong> 2007 * * *<br />

S<strong>and</strong> Isl<strong>and</strong> 2008 0.84 (n=85) 0.69 (n=71) 1.04 (0.771) n=48<br />

aProductivity <strong>and</strong> Hatch<strong>in</strong>g/Fledg<strong>in</strong>g success is not necessary based on measurements <strong>in</strong> the same eggs/nests.<br />

bIn 2003 chicks could only be followed to the age <strong>of</strong> 7-15 days old. Values <strong>of</strong> fl edg<strong>in</strong>g success <strong>and</strong> productivity<br />

may not be representative.<br />

* = no data on chick production <strong>in</strong> 2004 <strong>and</strong> 2007.<br />

more, the year with the second highest recorded chick production (2005)<br />

was also the season with the second highest proportion <strong>of</strong> 3-egg clutches.<br />

Although the few data po<strong>in</strong>ts <strong>in</strong> the study may not be suffi cient to test if<br />

<strong>Arctic</strong> <strong>terns</strong> are able to adjust their clutch size to food availability <strong>in</strong> the<br />

current <strong>breed<strong>in</strong>g</strong> season (Suddaby <strong>and</strong> Ratcliffe 1997, Kilpi et al. 1992), the<br />

results suggest that this may <strong>in</strong> fact the case.<br />

1.12 Growth rate <strong>and</strong> chick survival<br />

Dur<strong>in</strong>g the course <strong>of</strong> fi eldwork, estimates <strong>of</strong> hatch<strong>in</strong>g success, chick<br />

growth <strong>and</strong> chick survival were obta<strong>in</strong>ed. <strong>Arctic</strong> tern chicks becomes agile<br />

<strong>and</strong> mobile after less than two days <strong>and</strong> will immediately start runn<strong>in</strong>g<br />

away from the nest site if a l<strong>and</strong> predator (humans <strong>in</strong>cluded) approaches<br />

(Bianki <strong>and</strong> Isaksen 2000). In order to obta<strong>in</strong> consistent daily measurements<br />

<strong>of</strong> chick growth <strong>and</strong> survival, a small enclosure made from chicken<br />

wire was set up around <strong>Arctic</strong> tern nests at the study site. This method has<br />

previously been applied (Monaghan et al. 1989 a, b) <strong>in</strong> <strong>Arctic</strong> tern studies,<br />

<strong>and</strong> the birds adapt well to the enclosure after a short habituation<br />

period. Nests were found dur<strong>in</strong>g the <strong>in</strong>cubation period <strong>and</strong> the nest area<br />

was enclosed prior to hatch<strong>in</strong>g. As l<strong>and</strong> predators were absent from the<br />

study sites dur<strong>in</strong>g the chick rear<strong>in</strong>g period, <strong>and</strong> the nest area could easy be<br />

approached from the air, it is unlikely that the enclosures <strong>in</strong>duced biased<br />

estimates <strong>of</strong> the level <strong>of</strong> predation.<br />

Mass (g)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 5 10 15 20 25 30<br />

Chick age (days)<br />

y = 5.558x – 3.6022<br />

R 2 = 0.9568


Table 3. Table <strong>of</strong> average growth daily rates (mass <strong>and</strong> w<strong>in</strong>g) <strong>in</strong> <strong>Arctic</strong> tern chicks aged 4-14<br />

days at Kitsissunnguit, West Greenl<strong>and</strong> (see Fig. 4). The number <strong>of</strong> daily measurements decreases<br />

over the season. Average daily measurements are presented <strong>in</strong> parenthesis.<br />

Year MASS WING<br />

2002 5.32 (n=15.5) 7.61 (n=15.5)<br />

2003 5.87 (n=25) 8.05 (n=19)<br />

2005 5.56 (n=15.2) 6.83 (n=15.6)<br />

2006 6.30 (n=39.8) 7.66 (n=34.4)<br />

<strong>Arctic</strong> tern chick growth rates were measured as the daily <strong>in</strong>crease <strong>in</strong> mass<br />

<strong>and</strong> w<strong>in</strong>g length. As growth is known to follow a sigmoidal pattern, with<br />

little <strong>in</strong>crease <strong>in</strong> the fi rst 3 days <strong>and</strong> levell<strong>in</strong>g <strong>of</strong>f after age 15 days (Fig.<br />

4), the l<strong>in</strong>ear period between 4 <strong>and</strong> 14 days was used to compare groups<br />

<strong>and</strong> seasons (Manus II <strong>and</strong> III, Tab. 3). This period was also used <strong>in</strong> <strong>terns</strong><br />

at Shetl<strong>and</strong> (Suddaby <strong>and</strong> Ratcliffe 1997) to address differences <strong>in</strong> growth<br />

rates between seasons. In Shetl<strong>and</strong>, chick growth varied with year <strong>and</strong><br />

ranged between 6.9 <strong>and</strong> 7.8 g per day – the same order <strong>of</strong> magnitude as<br />

recorded at Kitsissunnguit (Tab. 3).<br />

When obta<strong>in</strong><strong>in</strong>g measures for chick survival (Tab. 2), the enclosures were<br />

an essential tool <strong>in</strong> keep<strong>in</strong>g track <strong>of</strong> the chicks from hatch<strong>in</strong>g to fl edg<strong>in</strong>g.<br />

As the chicks grow older they become very mobile <strong>and</strong> diffi cult to fi nd<br />

<strong>and</strong> <strong>in</strong>formation on their fate (alive or dead) becomes almost impossible<br />

to achieve without enclosures.<br />

1.13 Feed<strong>in</strong>g<br />

The <strong>Arctic</strong> tern is an opportunistic, plunge-div<strong>in</strong>g <strong>and</strong> surface-dipp<strong>in</strong>g<br />

feeder, with a diet compris<strong>in</strong>g ma<strong>in</strong>ly small fi sh <strong>and</strong> large zooplankton<br />

(Cramps 1985, Hatch 2002). The species shows a high diversity <strong>of</strong> food<br />

items throughout its <strong>breed<strong>in</strong>g</strong> distribution <strong>and</strong> dur<strong>in</strong>g migration. The key<br />

prey species <strong>of</strong> the <strong>Arctic</strong> tern varies with its distribution, but fi sh is reported<br />

to be important <strong>in</strong> the diet throughout the <strong>breed<strong>in</strong>g</strong> range (Hatch<br />

2002). There are no systematic studies on the forag<strong>in</strong>g range <strong>of</strong> the <strong>Arctic</strong><br />

tern available, but “most” feed<strong>in</strong>g is reported to take place with<strong>in</strong> a 10 km<br />

(Boecker 1967) or 20 km (Pearson 1968) radius <strong>of</strong> the colony.<br />

The literature on the diet <strong>of</strong> <strong>Arctic</strong> Terns <strong>in</strong> Greenl<strong>and</strong> is very limited<br />

(Salomonsen (1950) mentioned zooplankton as important), which makes<br />

the results <strong>of</strong> the fi eldwork at Kitsissunnguit <strong>and</strong> S<strong>and</strong> Isl<strong>and</strong> relevant<br />

<strong>in</strong> a general context. At Kitsissunnguit, capel<strong>in</strong> (Mallotus villosus) was the<br />

s<strong>in</strong>gle most important prey item over the study period (2002-2006). More<br />

detailed studies (Manus III) revealed that capel<strong>in</strong> accounted for up to<br />

99.9 % <strong>of</strong> the energy <strong>in</strong>take <strong>of</strong> <strong>Arctic</strong> tern chicks <strong>in</strong> periods. The study at<br />

Kitsissunnguit also revealed variation <strong>in</strong> diet composition between seasons<br />

(Manus III <strong>and</strong> unpubl. data). In some years, other prey items (e.g.<br />

Stichaeidae sp. <strong>in</strong> 2005 <strong>and</strong> 2006, Wolffi sh (Anarhichas spp.) <strong>in</strong> 2006) may<br />

become important for shorter periods dur<strong>in</strong>g chick rear<strong>in</strong>g. Even discards<br />

from shrimp vessels appear <strong>in</strong> the chick diet when the commercial catch is<br />

sorted close to colony isl<strong>and</strong>s. Although these occasional <strong>in</strong>fl uxes <strong>of</strong> alternative<br />

prey items appear <strong>in</strong> the diet, the importance <strong>of</strong> capel<strong>in</strong> is unquestionable<br />

as the key prey species <strong>of</strong> <strong>Arctic</strong> <strong>terns</strong> <strong>in</strong> Disko Bay, <strong>and</strong> probably<br />

23


Figure 5. <strong>Arctic</strong> tern chick fed with polar cod at S<strong>and</strong> Isl<strong>and</strong>.<br />

24<br />

across most <strong>of</strong> West Greenl<strong>and</strong>, where capel<strong>in</strong> constitutes the l<strong>in</strong>k between<br />

zooplankton <strong>and</strong> higher trophic levels (Carscadden et al. 2002; Friis-Rødel<br />

<strong>and</strong> Kanneworff 2002).<br />

At high-arctic S<strong>and</strong> Isl<strong>and</strong>, opportunistic observations <strong>of</strong> prey items carried<br />

by adult birds dur<strong>in</strong>g 2007 <strong>and</strong> 2008 were conducted, along with systematic<br />

observations <strong>of</strong> chick diet <strong>in</strong> 2008 (Egevang <strong>and</strong> Stenhouse 2007,<br />

Egevang et al. 2008). Polar cod (both larvae <strong>and</strong> juvenile fi sh) appeared<br />

to be the most important prey species <strong>in</strong> the chick diet, with crustaceans<br />

(especially Thysanoessa ssp.) as secondary prey items (Egevang et al. 2008).<br />

1.14 Breed<strong>in</strong>g association<br />

Photo: Carsten Egevang.<br />

The <strong>Arctic</strong> tern shows a strong antagonistic, anti-predator behaviour towards<br />

potential predators with<strong>in</strong> the colony boundaries. Both l<strong>and</strong> mammals<br />

<strong>and</strong> avian predators are fi ercely attacked from the air (Hatch 2002).<br />

Shorebirds such as purple s<strong>and</strong>piper (Calidris maritima), semipalmated<br />

plover (Charadrius semipalmatus), <strong>and</strong> red phalarope (Phalaropus fulicarius)<br />

are known to breed <strong>in</strong> higher densities <strong>and</strong> with reduced nest predation<br />

when found with<strong>in</strong> or close to an <strong>Arctic</strong> tern colony (Nguyen et al. 2006,<br />

Smith et al. 2007, Summer <strong>and</strong> Nicoll 2004). In Greenl<strong>and</strong>, Sab<strong>in</strong>e’s gulls<br />

(Xema sab<strong>in</strong>i) breed almost exclusively with <strong>Arctic</strong> <strong>terns</strong> (Levermann <strong>and</strong><br />

Tøttrup 2007), with 21 out <strong>of</strong> 24 colonies found <strong>in</strong> association with tern<br />

colonies. Ross’s gull (Rhodostethia rosea) has only been found <strong>breed<strong>in</strong>g</strong> ten<br />

times <strong>in</strong> Greenl<strong>and</strong>, <strong>and</strong> n<strong>in</strong>e <strong>of</strong> these <strong>breed<strong>in</strong>g</strong> records have been <strong>in</strong> association<br />

with <strong>breed<strong>in</strong>g</strong> <strong>Arctic</strong> <strong>terns</strong> (Egevang <strong>and</strong> Boertmann 2008). At Kitsissunnguit,<br />

there is a strong <strong>breed<strong>in</strong>g</strong> association between <strong>Arctic</strong> <strong>terns</strong> <strong>and</strong><br />

red-necked phalaropes (Phalaropus lobatus) <strong>and</strong> red phalarope (Egevang et al.


2006, Egevang et al. 2004). Analysis <strong>of</strong> the historical <strong>and</strong> present distribution<br />

<strong>of</strong> <strong>breed<strong>in</strong>g</strong> <strong>terns</strong> <strong>and</strong> phalaropes at Kitsissunnguit showed that phalarope<br />

<strong>breed<strong>in</strong>g</strong> densities are higher on isl<strong>and</strong>s where <strong>terns</strong> breed. In the case <strong>of</strong> the<br />

red phalarope, the <strong>breed<strong>in</strong>g</strong> association is particularly strong <strong>and</strong> <strong>breed<strong>in</strong>g</strong><br />

only occurred where <strong>breed<strong>in</strong>g</strong> <strong>terns</strong> are found (Egevang et al. 2004). Breed<strong>in</strong>g<br />

association <strong>and</strong> higher <strong>breed<strong>in</strong>g</strong> densities are also documented for mallards<br />

(Anas platyrhynchos) <strong>and</strong> red-breasted mergansers (Mergus serrator),<br />

while long-tailed ducks (Clangula hyemalis) are exclusively found <strong>breed<strong>in</strong>g</strong><br />

at isl<strong>and</strong>s with<strong>terns</strong> (Egevang et al. 2006).<br />

At Kitsissunnguit, where high numbers <strong>of</strong> <strong>Arctic</strong> <strong>terns</strong> breed, the response<br />

to predators with<strong>in</strong> the boundaries <strong>of</strong> the colony is very strong.<br />

The presence <strong>of</strong> an avian predator results <strong>in</strong> mobb<strong>in</strong>g behaviour <strong>of</strong> hundreds,<br />

sometimes thous<strong>and</strong>s, <strong>of</strong> <strong>terns</strong> with <strong>in</strong>tense vocalisation. In order<br />

to document the <strong>breed<strong>in</strong>g</strong> association between phalaropes <strong>and</strong> <strong>terns</strong>, we<br />

conducted a study (Manus V) on phalarope behavioural response to tern<br />

alarm calls. Potential avian predators over-fl y<strong>in</strong>g the colony <strong>and</strong> both l<strong>and</strong><br />

<strong>and</strong> avian predators at the outskirts <strong>of</strong> the colony do not trigger a response<br />

from the <strong>terns</strong>. As soon as the predator enters an area with <strong>breed<strong>in</strong>g</strong> <strong>terns</strong>,<br />

alarm calls <strong>and</strong> mobb<strong>in</strong>g is <strong>in</strong>itiated by the <strong>terns</strong>. These alarm calls vary,<br />

not only <strong>in</strong> duration, but also <strong>in</strong> the character <strong>of</strong> the call (Hatch 2002).<br />

Alarm calls <strong>in</strong> the study were divided <strong>in</strong>to three groups orig<strong>in</strong>at<strong>in</strong>g from:<br />

1) falcons or gulls, 2) human disturbance, or 3) dreads (false alarms). By<br />

record<strong>in</strong>g behavioural response from both red-necked <strong>and</strong> red phalaropes<br />

to tern alarm calls, we were able to document a strong relationship between<br />

the species. Phalaropes did not respond differently to alarms<br />

caused by a predator compared to false alarms, but extended tern alarms<br />

caused stronger phalarope response than short ones. In conclusion, phalaropes<br />

benefi t from both a higher predator detection rate <strong>and</strong> aggressive<br />

defence <strong>in</strong> the tern nest<strong>in</strong>g area. This supports the hypothesis (Egevang et<br />

al. 2004, Egevang et al. 2006) <strong>of</strong> a decl<strong>in</strong>e <strong>in</strong> phalarope numbers <strong>and</strong> shift<br />

<strong>in</strong> phalarope distribution at Kitsissunnguit, governed by the distribution<br />

<strong>of</strong> <strong>breed<strong>in</strong>g</strong> <strong>Arctic</strong> <strong>terns</strong> (Manus V).<br />

1.15 <strong>Migration</strong><br />

The <strong>Arctic</strong> tern is known to perform the longest annual migration <strong>in</strong> the<br />

animal k<strong>in</strong>gdom. The distance alone, from the <strong>breed<strong>in</strong>g</strong> colonies at high<br />

latitudes <strong>of</strong> the northern hemisphere to the w<strong>in</strong>ter quarters at high latitudes<br />

<strong>in</strong> the southern hemisphere, makes the <strong>Arctic</strong> tern a c<strong>and</strong>idate for<br />

the longest annual roundtrip (Berthold 2001, Newton 2008). There were<br />

several early attempts to <strong>in</strong>terpret the migration <strong>of</strong> the species (Kullenberg<br />

1946, Storr 1958), but the fi rst comprehensive review was presented by<br />

Salomonsen (1967). Based on r<strong>in</strong>g<strong>in</strong>g recoveries <strong>and</strong> observations from<br />

the southern seas, Salomonsen suggested that the southbound migration<br />

follows the coast <strong>of</strong> West Europe <strong>and</strong> later West Africa, with the birds arriv<strong>in</strong>g<br />

<strong>in</strong> the waters <strong>of</strong>f South Africa <strong>in</strong> November. Salomonsen suggested<br />

the ma<strong>in</strong> w<strong>in</strong>ter<strong>in</strong>g areas to be <strong>of</strong>f the southern tip <strong>of</strong> Africa <strong>and</strong> South<br />

America, <strong>and</strong> that <strong>Arctic</strong> <strong>terns</strong> might circumnavigate the Antarctic cont<strong>in</strong>ent<br />

<strong>in</strong> early spr<strong>in</strong>g before <strong>in</strong>itiat<strong>in</strong>g their northbound migration. This<br />

hypothesis was later supported by radar <strong>and</strong> visual observations <strong>of</strong> <strong>terns</strong><br />

migrat<strong>in</strong>g from the Bell<strong>in</strong>gshausen Sea to the Weddell Sea (Gudmundsson<br />

et al.1992). It has been suggested that <strong>Arctic</strong> <strong>terns</strong> complete the southbound<br />

migration <strong>in</strong> a step-wise fashion, mov<strong>in</strong>g between rich feed<strong>in</strong>g<br />

25


Figure 6. An <strong>Arctic</strong> tern equipped<br />

with a geo-locator <strong>in</strong> 2007 returns<br />

to the <strong>breed<strong>in</strong>g</strong> site at S<strong>and</strong> Isl<strong>and</strong><br />

<strong>in</strong> Northeast Greenl<strong>and</strong> the<br />

follow<strong>in</strong>g year, after hav<strong>in</strong>g completed<br />

a round-trip migration <strong>of</strong><br />

more than 70,000 km.<br />

26<br />

grounds (Alerstam 1985). Cross<strong>in</strong>g over l<strong>and</strong> areas <strong>and</strong> the Greenl<strong>and</strong><br />

<strong>in</strong>l<strong>and</strong> ice at high altitude was suggested to take place <strong>in</strong> the migration<br />

<strong>of</strong> the <strong>Arctic</strong> tern <strong>in</strong> the mid-1980s us<strong>in</strong>g radar observations (Alerstam et<br />

al. 1986). There was little evidence <strong>of</strong> the northbound migration <strong>of</strong> the<br />

<strong>Arctic</strong> tern <strong>in</strong> spr<strong>in</strong>g available for Salomonsen, but a r<strong>in</strong>g<strong>in</strong>g recovery <strong>of</strong> a<br />

Greenl<strong>and</strong> r<strong>in</strong>ged bird from Columbia <strong>in</strong> the highl<strong>and</strong> <strong>of</strong> South America,<br />

led him to speculate that at least some birds may end up <strong>in</strong> the Pacifi c<br />

Ocean <strong>and</strong> cross over l<strong>and</strong> to enter the Atlantic Ocean. However, the major<br />

northbound migration was believed to be <strong>in</strong>itiated <strong>in</strong> March <strong>in</strong> the Atlantic<br />

Ocean <strong>and</strong> occur more rapidly <strong>and</strong> over a wider front compared to<br />

autumn (Kampp 2001, Bourne <strong>and</strong> Casement 1996).<br />

Several authors (e.g. Berthold 2001, Newton 2008) have attempted to estimate<br />

the total distance travelled dur<strong>in</strong>g the annual migration <strong>of</strong> the <strong>Arctic</strong><br />

tern. As the fl ight path was largely unknown, these estimates vary, but<br />

typically a fi gure <strong>of</strong> 40,000 km was quoted as the annual trip from <strong>breed<strong>in</strong>g</strong><br />

grounds to the w<strong>in</strong>ter<strong>in</strong>g grounds, <strong>and</strong> back.<br />

As advances <strong>in</strong> technology make devices for mapp<strong>in</strong>g animal migration<br />

smaller <strong>and</strong> lighter, the chance <strong>of</strong> document<strong>in</strong>g the long migration <strong>of</strong> the<br />

<strong>Arctic</strong> tern crept closer. The ideal tool for this would be a satellite transmitter<br />

with a full year <strong>of</strong> battery capacity. However, at present, satellite transmitters<br />

are still too heavy for birds with a mass under 250 gram to carry on<br />

migration. Instead, the less accurate, but much lighter geolocators (m<strong>in</strong>iature<br />

archival light loggers), have proven to be an effective tool (Richards et<br />

al. 2004). By record<strong>in</strong>g <strong>and</strong> stor<strong>in</strong>g ambient light <strong>in</strong>tensity, the geolocators<br />

reveal <strong>in</strong>formation on sunrise <strong>and</strong> sunset. When these data are comb<strong>in</strong>ed<br />

with time record<strong>in</strong>gs, two daily geographical positions can be calculated<br />

<strong>and</strong> migration routes can be mapped. The disadvantage <strong>of</strong> geolocators is<br />

that they cannot transmit data, <strong>and</strong> the tagged bird has to be caught aga<strong>in</strong><br />

at the end <strong>of</strong> the study period – a logistical challenge that normally requires<br />

that the bird nest at the same location two years <strong>in</strong> a row.<br />

Although <strong>of</strong>ten quoted <strong>in</strong> both scientifi c <strong>and</strong> popular literature as the<br />

longest migration performed by any bird <strong>in</strong> the world, a study (Shaffer et<br />

al. 2006) questioned the <strong>Arctic</strong> tern’s status as the longest migrant. Us<strong>in</strong>g<br />

geolocators, Shaffer et al. (2006) were able to document that sooty shearwaters<br />

(Puffi nus griseus) make an annual round trip from New Zeal<strong>and</strong> to<br />

the waters <strong>in</strong> the northern Pacifi c Ocean <strong>and</strong> back, <strong>of</strong> 64,037 (± 9,779) km<br />

on average.


Figure 7. Simplifi ed fi gure show<strong>in</strong>g<br />

migration pat<strong>terns</strong> <strong>of</strong> the<br />

<strong>Arctic</strong> tern, along with approximate<br />

position <strong>of</strong> the<br />

birds each month, from<br />

the <strong>breed<strong>in</strong>g</strong> sites <strong>in</strong><br />

Greenl<strong>and</strong> <strong>and</strong> Icel<strong>and</strong><br />

to the w<strong>in</strong>ter grounds<br />

at Antarctica. After<br />

<strong>in</strong>itiat<strong>in</strong>g the southbound<br />

migration<br />

(yellow l<strong>in</strong>e) the<br />

birds paused their<br />

migration <strong>in</strong> the<br />

central part <strong>of</strong><br />

the North Atlantic<br />

(small circle) for<br />

almost a month<br />

before they cont<strong>in</strong>ue<br />

towards the<br />

w<strong>in</strong>ter<strong>in</strong>g sites at<br />

Antarctica (large<br />

circle). In spr<strong>in</strong>g, the<br />

northbound migration<br />

(white l<strong>in</strong>e) is conducted<br />

more than twice as fast<br />

<strong>in</strong> a gigantic “S” shaped<br />

pattern through the Atlantic<br />

Ocean. Areas particularly<br />

rich <strong>in</strong> biological productivity<br />

are <strong>in</strong>dicated by yellow<br />

<strong>and</strong> green colours.<br />

At S<strong>and</strong> Isl<strong>and</strong>, we conducted a study (Manus I) which recorded a full<br />

year <strong>of</strong> migration <strong>in</strong> <strong>Arctic</strong> <strong>terns</strong>.<br />

Prior to deploy<strong>in</strong>g geolocators on <strong>Arctic</strong> <strong>terns</strong>, however, a small-scale<br />

dummy test (Egevang 2006) was conducted on <strong>terns</strong> <strong>breed<strong>in</strong>g</strong> at Kitsissunnguit<br />

<strong>in</strong> 2006. In order to observe how the birds would respond to objects<br />

attached to the leg, eleven arctic <strong>terns</strong> were equipped with dummies<br />

with the approximate mass <strong>and</strong> physical dimensions as loggers scheduled<br />

to be manufactured <strong>in</strong> 2007. Although some negative behavioural<br />

response (“leg-lift<strong>in</strong>g”) to the loggers were observed the days follow<strong>in</strong>g<br />

the deployment, the overall conclusion was that very little or no effect<br />

could be detected <strong>in</strong> the chick rear<strong>in</strong>g performed by the tagged adult bird.<br />

On the basis <strong>of</strong> these fi nd<strong>in</strong>gs, it was decided to go ahead with a full scale<br />

study deploy<strong>in</strong>g geolocators on <strong>Arctic</strong> <strong>terns</strong> at S<strong>and</strong> Isl<strong>and</strong> <strong>in</strong> 2007.<br />

The study on <strong>Arctic</strong> tern migration revealed the longest migration ever<br />

recorded <strong>in</strong> any animal, with a total annual average distance <strong>of</strong> 70,900 km<br />

(range 59,500-81,600 km) travelled. The study also identifi ed a previously<br />

unknown stop-over site <strong>in</strong> the central part <strong>of</strong> the North Atlantic Ocean<br />

(Fig. 5), where the birds spent on average 24.6 (±6 days) before cont<strong>in</strong>u<strong>in</strong>g<br />

south. This at-sea hot-spot is located between cold <strong>and</strong> warm water<br />

masses with high eddy variability. Satellite imagery analysis <strong>of</strong> Chlorophyll<br />

a. distribution revealed a high biological productivity <strong>in</strong> this particularly<br />

area whereas areas to the south were generally <strong>of</strong> low productiv-<br />

ity. It seems likely that <strong>Arctic</strong> <strong>terns</strong> use this<br />

area to for- age <strong>and</strong> “fuel up”<br />

1 June to<br />

before conduct<strong>in</strong>g<br />

1 August<br />

their<br />

1 September<br />

1 November<br />

1 December to 1 April<br />

1 May<br />

1 November<br />

27


28<br />

migration <strong>in</strong>to tropical mar<strong>in</strong>e regions with low productivity <strong>and</strong> limited<br />

food availability. It is likely that this <strong>Arctic</strong> tern stop-over site may serve<br />

as a hot-spot area for other migrat<strong>in</strong>g seabirds, e.g. long-tailed skua (Stercorarius<br />

longicaudus) has been observed <strong>in</strong> high densities <strong>in</strong> this area dur<strong>in</strong>g<br />

ship-based surveys (D. Boertmann pers. com).<br />

The migration study also revealed a divide <strong>in</strong> the southbound migration<br />

<strong>of</strong> the <strong>Arctic</strong> tern. Just south (~10° N) <strong>of</strong> the Cape Verde Isl<strong>and</strong>, seven <strong>in</strong>dividuals<br />

migrated south along the coast <strong>of</strong> West Africa (as expected from<br />

r<strong>in</strong>g<strong>in</strong>g recoveries), while four <strong>in</strong>dividuals crossed the Atlantic Ocean<br />

to migrate south along the coast <strong>of</strong> South America. Furthermore, three<br />

<strong>in</strong>dividuals drifted east along the southern Polar Front <strong>and</strong> entered the<br />

Indian Ocean. Although divides <strong>in</strong> migratory routes are known <strong>in</strong> other<br />

avian species <strong>breed<strong>in</strong>g</strong> at a s<strong>in</strong>gle location, for example ospreys (P<strong>and</strong>ion<br />

haliaetus) <strong>breed<strong>in</strong>g</strong> <strong>in</strong> Sweden (Hake et al. 2001), the study on <strong>Arctic</strong> tern<br />

migration illustrates goal orientation at a global scale. Although the <strong>terns</strong><br />

travelled through vastly different areas, they all w<strong>in</strong>tered <strong>in</strong> a relatively<br />

restricted geographical area <strong>in</strong> the Weddell Sea.<br />

The <strong>Arctic</strong> tern migration study also highlighted differences <strong>in</strong> the pace<br />

<strong>of</strong> southbound versus northbound migrations. While the migration south<br />

to the w<strong>in</strong>ter quarters was conducted over a period <strong>of</strong> three months (average<br />

93 days <strong>and</strong> an average speed <strong>of</strong> 330 km per day), the northbound<br />

migration back to the <strong>breed<strong>in</strong>g</strong> sites was much faster. The <strong>terns</strong> covered<br />

the 25,700 km from the w<strong>in</strong>ter site north to 60º N <strong>in</strong> an average <strong>of</strong> 40 days.<br />

This long leg <strong>of</strong> migration was conducted with average daily distances <strong>of</strong><br />

520 km – with some <strong>in</strong>dividuals fl y<strong>in</strong>g up to 670 km per day. Unequal migration<br />

speeds <strong>of</strong> autumn versus spr<strong>in</strong>g are known from numerous bird<br />

species (Newton 2008) but, <strong>in</strong> this study, we were able to correlate the fast<br />

northbound migration with the prevail<strong>in</strong>g global w<strong>in</strong>d systems.<br />

Most studies on bird migration are performed on l<strong>and</strong> birds <strong>and</strong> much <strong>of</strong><br />

our underst<strong>and</strong><strong>in</strong>g <strong>of</strong> the mechanism beh<strong>in</strong>d migration is based on l<strong>and</strong><br />

bird studies. Seabirds are poorly represented <strong>in</strong> text books on migration<br />

(e.g. Newton 2008, Berthold 2001), even though it is amongst seabirds that<br />

the most spectacular migration pat<strong>terns</strong> are found. Even <strong>in</strong> modern seabird<br />

text books seabird migration may be described “as most seabirds migrate<br />

exclusively at sea, they have an opportunity to rest or feed whenever<br />

they feel like it: not an option for l<strong>and</strong> birds cross<strong>in</strong>g water or deserts”<br />

(Gaston 2004). Our study show that the <strong>Arctic</strong> tern migration <strong>in</strong> many<br />

ways resembles that <strong>of</strong> l<strong>and</strong> birds with dist<strong>in</strong>ct w<strong>in</strong>ter<strong>in</strong>g areas <strong>and</strong> stopover<br />

sites along the migration route, <strong>and</strong> a high level <strong>of</strong> synchrony <strong>in</strong> phenology<br />

amongst <strong>in</strong>dividuals.


2 Conclusion<br />

In conclusion, the studies performed at Kitsissunnguit <strong>and</strong> S<strong>and</strong> Isl<strong>and</strong><br />

elevated the level <strong>of</strong> knowledge on the <strong>Arctic</strong> tern <strong>in</strong> Greenl<strong>and</strong> considerably.<br />

From the series <strong>of</strong> population size estimates <strong>in</strong> Disko Bay we learned<br />

that the <strong>breed<strong>in</strong>g</strong> population at the largest colony <strong>in</strong> Greenl<strong>and</strong>, Kitsissunnguit,<br />

had not crashed as suggested, but <strong>in</strong>stead numbers were stable<br />

over a fi ve year period at 18,500 + 3,500 pairs. Although considerably<br />

lower than population size estimates from fi ve or six decades ago, it seems<br />

reasonable to conclude that the decl<strong>in</strong>e <strong>in</strong> the <strong>Arctic</strong> tern population at<br />

Kitsissunnguit happened prior to 1980, which may also be the case for the<br />

other tern colonies <strong>in</strong> Greenl<strong>and</strong>. The example from Kitsissunnguit highlights<br />

the need for a systematic monitor<strong>in</strong>g plan for <strong>Arctic</strong> <strong>terns</strong>, if natural<br />

resource managers <strong>in</strong> Greenl<strong>and</strong> are to address the status <strong>of</strong> birds like the<br />

<strong>Arctic</strong> tern. However, the fl uctuat<strong>in</strong>g <strong>breed<strong>in</strong>g</strong> <strong>of</strong> the species requires a<br />

specially designed monitor<strong>in</strong>g where many colonies are monitored with<strong>in</strong><br />

the same <strong>breed<strong>in</strong>g</strong> season, or alternatively that large colonies, like Kitsissunnguit<br />

are monitored on a regular basis, preferably <strong>in</strong> consecutive<br />

years. The decl<strong>in</strong>e <strong>in</strong> the Greenl<strong>and</strong> <strong>Arctic</strong> tern population has been l<strong>in</strong>ked<br />

to an egg harvest <strong>of</strong> a magnitude beyond what was believed to be a susta<strong>in</strong>able<br />

level. The output <strong>of</strong> the harvest model (Manus II) <strong>in</strong>dicate that<br />

this is very likely to have been the case – egg harvest<strong>in</strong>g beyond mid-June<br />

is likely to affect the population severely <strong>and</strong> should be avoided <strong>in</strong> future<br />

management.<br />

The studies <strong>in</strong>cluded <strong>in</strong> this thesis also produced the fi rst estimates <strong>of</strong> the<br />

key prey species <strong>of</strong> the <strong>Arctic</strong> tern dur<strong>in</strong>g the <strong>breed<strong>in</strong>g</strong> season. In the central<br />

parts <strong>of</strong> West Greenl<strong>and</strong> the capel<strong>in</strong> proved to be <strong>of</strong> very high importance.<br />

Over the last decade the idea <strong>of</strong> <strong>in</strong>itiat<strong>in</strong>g an <strong>in</strong>dustrial fi shery for<br />

capel<strong>in</strong> <strong>in</strong> Greenl<strong>and</strong> has been proposed on several occasions. The identifi<br />

cation <strong>of</strong> the diet <strong>of</strong> the <strong>Arctic</strong> tern is simply confi rmation <strong>of</strong> yet another<br />

<strong>Arctic</strong> bird, fi sh, or mammal species that depends heavily on capel<strong>in</strong>,<br />

mak<strong>in</strong>g the consequences <strong>of</strong> open<strong>in</strong>g up a large scale commercial fi shery<br />

uncerta<strong>in</strong> but nonetheless alarm<strong>in</strong>g.<br />

The study at both Kitsissunnguit <strong>and</strong> S<strong>and</strong> Isl<strong>and</strong> verifi ed the strong connection<br />

between <strong>Arctic</strong> <strong>terns</strong> <strong>and</strong> a number <strong>of</strong> other avian species that<br />

benefi t from the protection that <strong>terns</strong> <strong>of</strong>fer from <strong>in</strong>truders with<strong>in</strong> the perimeters<br />

<strong>of</strong> the colony. In identify<strong>in</strong>g important natural sites with a high<br />

diversity <strong>of</strong> <strong>breed<strong>in</strong>g</strong> bird species, one could consider <strong>breed<strong>in</strong>g</strong> sites <strong>of</strong><br />

<strong>Arctic</strong> <strong>terns</strong>.<br />

29


30<br />

3 Future research<br />

The study on the long-distance migration <strong>of</strong> the <strong>Arctic</strong> tern (Manus I) revealed<br />

a number <strong>of</strong> new facts not previously known about the impressive<br />

annual migration <strong>and</strong> verifi ed exist<strong>in</strong>g knowledge obta<strong>in</strong>ed from r<strong>in</strong>g<strong>in</strong>g<br />

recoveries. This study also raises some new questions that would be <strong>in</strong>terest<strong>in</strong>g<br />

to pursue <strong>in</strong> future studies: 1) at the <strong>breed<strong>in</strong>g</strong> areas, the <strong>Arctic</strong><br />

tern is known to be on the w<strong>in</strong>g most <strong>of</strong> the time. When it rests, it sits<br />

on the ground or alternatively on an iceberg. Unlike most other seabirds,<br />

the <strong>Arctic</strong> tern rarely rests on the water <strong>and</strong> only <strong>in</strong> very calm weather.<br />

The geolocators used <strong>in</strong> the migration study also record dry or wet condition<br />

dur<strong>in</strong>g the period <strong>of</strong> deployment, which can be used to <strong>in</strong>dicate<br />

the <strong>in</strong>dividual’s behaviour dur<strong>in</strong>g migration (Guilford et al. 2009). From<br />

a both physiological <strong>and</strong> energetic perspective it could be <strong>in</strong>terest<strong>in</strong>g to<br />

<strong>in</strong>vestigate whether <strong>Arctic</strong> <strong>terns</strong> manage the long stretches <strong>of</strong> migration<br />

between the polar areas without long periods <strong>of</strong> rest<strong>in</strong>g on the water; 2)<br />

The migration study identifi ed a divide <strong>in</strong>to two different southbound<br />

routes. This divide could be co<strong>in</strong>cidental, where w<strong>in</strong>d systems drive the<br />

birds to take a western or eastern route. This would mean that the same<br />

<strong>in</strong>dividual may migrate south by either <strong>of</strong> the two different routes each<br />

year. An alternative explanation would be that the route may be genetically<br />

coded or learned <strong>in</strong> the <strong>in</strong>dividual <strong>and</strong> the same bird will choose the<br />

same route each year. The geolocators have the capacity to log for two<br />

years <strong>and</strong> are cable <strong>of</strong> stor<strong>in</strong>g data for up to ten years. In theory, loggers<br />

applied <strong>in</strong> 2007 <strong>and</strong> not retrieved <strong>in</strong> 2008 (potentially up to 40 loggers)<br />

should conta<strong>in</strong> data on two round trips which could help shed light on<br />

which <strong>of</strong> the two hypotheses is most plausible. An attempt to retrieve loggers<br />

at S<strong>and</strong> Isl<strong>and</strong> was made <strong>in</strong> 2009, but was unsuccessful due to a year<br />

<strong>of</strong> <strong>breed<strong>in</strong>g</strong> failure. Hopefully, an attempt <strong>in</strong> 2010 will prove to have more<br />

success; 3) The migration study identifi ed an area <strong>in</strong> the central part <strong>of</strong> the<br />

Atlantic Ocean to be <strong>of</strong> high importance for the <strong>terns</strong> on their southbound<br />

migration. It seems likely that this area may be important for other surface<br />

feed<strong>in</strong>g seabirds as an at-sea forag<strong>in</strong>g hot-spot, <strong>and</strong> it could be <strong>in</strong>terest<strong>in</strong>g<br />

to exp<strong>and</strong> the number <strong>of</strong> study species <strong>in</strong> a migration study us<strong>in</strong>g geolocators.<br />

Such a study could prove to be an effi cient tool to identify at-sea<br />

areas <strong>of</strong> high biodiversity otherwise diffi cult or cost-prohibitive to obta<strong>in</strong>.<br />

Although the study on relay<strong>in</strong>g <strong>in</strong> <strong>Arctic</strong> <strong>terns</strong> (Manus III) did produce<br />

estimates <strong>of</strong> the species’ ability to produce a replacement clutch when the<br />

fi rst clutch was removed, additional detailed <strong>in</strong>formation is needed <strong>in</strong> order<br />

to address the impact <strong>of</strong> harvest<strong>in</strong>g <strong>and</strong> relay<strong>in</strong>g at the population<br />

level. However, large logistical diffi culties are associated with a study <strong>of</strong><br />

this k<strong>in</strong>d. Relay<strong>in</strong>g <strong>Arctic</strong> <strong>terns</strong> may easily move with<strong>in</strong> or even well out<br />

<strong>of</strong> the colony to place their new nest. The chances <strong>of</strong> detection <strong>of</strong> the new<br />

nest site, <strong>and</strong> establish<strong>in</strong>g an accurate estimate <strong>of</strong> what proportion <strong>of</strong> the<br />

population will relay, decreases with distance from the orig<strong>in</strong>al nest site.<br />

Unless devices, such as radio transmitters, that are able to track the location<br />

<strong>of</strong> the bird <strong>in</strong> a study are used, it will be diffi cult to obta<strong>in</strong> accurate<br />

estimates <strong>of</strong> relay<strong>in</strong>g <strong>in</strong> <strong>Arctic</strong> <strong>terns</strong>.


4 References<br />

Alerstam, T. (1985). “Strategies <strong>of</strong> migratory fl ight, illustrated by arctic <strong>and</strong> common<br />

<strong>terns</strong>, Sterna paradisaea <strong>and</strong> Sterna hirundo”. Contrib. Mar. Sci. (Suppl.) (27): 580–603.<br />

Alerstam, T., C. Hjort, G. Högsted, P. E. Jönsson, J. Karlsson <strong>and</strong> B. Larsson (1986).<br />

“Spr<strong>in</strong>g migration <strong>of</strong> birds across the Greenl<strong>and</strong> Inl<strong>and</strong>ice”. Meddelser om Grønl<strong>and</strong>,<br />

Bioscience 21: 38.<br />

Bertelsen, A. (1921). “Fuglene i Umánaq distrikt”. Meddelser om Grønl<strong>and</strong> 62(2): 139-214.<br />

Berthold, P. (2001). Bird migration: a general survey Bird migration: a general survey.<br />

Oxford University Press, ed. 2.<br />

Bianki, V. V. (1967). “Waders, gulls <strong>and</strong> alcids <strong>of</strong> K<strong>and</strong>alaksha Bay (In Russian)”. K<strong>and</strong>alaksha<br />

State Reserve 6, 364 pages.<br />

Bianki, V. V. <strong>and</strong> K. Isaksen (2000). <strong>Arctic</strong> tern Sterna paradisaea. The status <strong>of</strong> mar<strong>in</strong>e<br />

birds <strong>breed<strong>in</strong>g</strong> <strong>in</strong> the Barents Sea region. A.-N. T., B. V., S. H.et al. Tromsø, Norsk<br />

Polar<strong>in</strong>stitutt Rapportserie. 113: 131-136.<br />

Boecker, M. (1967). “Vergleichende Untersuchungen zur Nahrungsund Nistökologie<br />

der Flugseeschwalbe und der Kiistenseeschwalbe”. Bonn Zool. Beitr. 18: 15-126.<br />

Boertmann, D. (1994). “An annotated checklist to the birds <strong>of</strong> Greenl<strong>and</strong>”. Meddelelser<br />

om Grønl<strong>and</strong>, Bioscience 38: 1-63.<br />

Boertmann, D. (2007). ”Grønl<strong>and</strong>s Rødliste”. Danmarks Miljøundersøgelser, Afdel<strong>in</strong>g<br />

for Arktisk Miljø, Aarhus Universitet.<br />

Boertmann, D., A. Mosbech, K. Falk <strong>and</strong> K. Kampp (1996). Seabird colonies <strong>in</strong> western<br />

Greenl<strong>and</strong> (60º - 79º 30’ N lat.). Roskilde, National Environmental Research<br />

Institute, Denmark: 1-148.<br />

Bourne, W. R. P. <strong>and</strong> M. B. Casement (1996). “The migrations <strong>of</strong> the <strong>Arctic</strong> Tern”. Bull.<br />

Br. Ornithol. Club 116: 117–123.<br />

Br<strong>in</strong>dley E., G., N. Mudge, C. Dymond, B. Lodge, D. Ribb<strong>and</strong>s, P. Steele, E. Ellis, D.<br />

Meek <strong>and</strong> S. a. N. Ratcliffe. ( 1999). “The status <strong>of</strong> <strong>Arctic</strong> Terns Sterna paradisaea at<br />

Shetl<strong>and</strong> <strong>and</strong> Orkney <strong>in</strong> 1994”. Atlantic Seabirds 1: 135-143.<br />

Burnham, W., K. K. Burnham <strong>and</strong> T. J. Cade (2005). “Past <strong>and</strong> present assessments <strong>of</strong><br />

bird life <strong>in</strong> Uummannaq District, West Greenl<strong>and</strong>”. Dansk Ornitologisk Foren<strong>in</strong>gs<br />

Tidsskrift 99: 196-208.<br />

Carscadden, J. E., W. A. Montevecchi, G. K. Davoren <strong>and</strong> B. S. Nakashima (2002).<br />

“Trophic relationships along capel<strong>in</strong> (Mallotus villosus) <strong>and</strong> seabirds <strong>in</strong> a chang<strong>in</strong>g<br />

ecosystem”. ICES Journal <strong>of</strong> Mar<strong>in</strong>e Science 59: 1027-1033.<br />

Cramp, S., Ed. (1985). “Terns to woodpeckers”. Birds <strong>of</strong> the Western Palearctic. Oxford,<br />

Oxford University Press.<br />

Devl<strong>in</strong>, C. M., A. W. Diamond, S. W. Kress, C. S. Hall <strong>and</strong> L. Welch (2008). Breed<strong>in</strong>g<br />

Dispersal <strong>and</strong> Survival <strong>of</strong> <strong>Arctic</strong> Terns (Sterna paradisaea) Nest<strong>in</strong>g <strong>in</strong> the Gulf <strong>of</strong><br />

Ma<strong>in</strong>e. 125: 850-858.<br />

Egevang, C. 2006. Geo-locator dummy study on <strong>Arctic</strong> <strong>terns</strong> 2006. http://issuu.com/<br />

egevang/docs/geo-locator_dummy_study_06_1.<br />

Egevang, C. <strong>and</strong> D. Boertmann (2003). Havternen i Grønl<strong>and</strong> - status og undersøgelser<br />

2002. Roskilde, National Environmental research Institute: 72.<br />

Egevang, C. <strong>and</strong> D. Boertmann (2008). “Ross’s Gulls (Rhodostethia rosea) Breed<strong>in</strong>g <strong>in</strong><br />

Greenl<strong>and</strong>:<br />

A Review, with Special Emphasis on Records from 1979 to 2007”. <strong>Arctic</strong> 61(3): 322-328.<br />

Egevang, C., D. Boertmann <strong>and</strong> O. S. Kristensen (2005). Moniter<strong>in</strong>g af havternebest<strong>and</strong>en<br />

på Kitsissunnguit (Grønne Ejl<strong>and</strong>) og den sydlige del af Disko Bugt,<br />

2002-2004. Nuuk, Grønl<strong>and</strong>s Natur<strong>in</strong>stitut: 41.<br />

31


32<br />

Egevang, C., K. Kampp <strong>and</strong> D. Boertmann (2004). “The Breed<strong>in</strong>g Association <strong>of</strong> Red<br />

Phalaropes (Phalaropus fulicarius) with <strong>Arctic</strong> Terns (Sterna paradisaea): Response to<br />

a Redistribution <strong>of</strong> Terns <strong>in</strong> a Major Greenl<strong>and</strong> Colony”. Waterbirds 27(4): 406-410.<br />

Egevang, C., K. Kampp <strong>and</strong> D. Boertmann (2006). ”Decl<strong>in</strong>es <strong>in</strong> <strong>breed<strong>in</strong>g</strong> waterbirds<br />

follow<strong>in</strong>g a redistribution <strong>of</strong> <strong>Arctic</strong> Terns Sterna paradisaea <strong>in</strong> West Greenl<strong>and</strong>”.<br />

Waterbirds around the World. C. A. G. D. A. S. G. C. Boere. The stationery Offi ce,<br />

Ed<strong>in</strong>burgh, UK: 154.<br />

Egevang, C. <strong>and</strong> I. J. Stenhouse (2007). “Field report from S<strong>and</strong> Isl<strong>and</strong>, Northeast<br />

Greenl<strong>and</strong>, 2007”. Greenl<strong>and</strong> Institute <strong>of</strong> Natural Resources.<br />

Egevang, C., I. J. Stenhouse, R. A. Phillips, A. Petersen, J. W. Fox <strong>and</strong> J. R. D. Silk<br />

(2010). “Track<strong>in</strong>g <strong>of</strong> <strong>Arctic</strong> <strong>terns</strong> Sterna paradisaea reveals longest animal migration”.<br />

Proceed<strong>in</strong>gs <strong>of</strong> National Academy <strong>of</strong> Science <strong>of</strong> the United States <strong>of</strong> America,<br />

107: 2078-2081.<br />

Egevang, C., I. J. Stenhouse, L. M. Rasmussen, M. Willemoes <strong>and</strong> F. Ugarte (2008).<br />

“Field report from S<strong>and</strong> Isl<strong>and</strong>, Northeast Greenl<strong>and</strong>, 2008”. Greenl<strong>and</strong> Institute<br />

<strong>of</strong> Natural Resources.<br />

Fægteborg, M. (2000). ”Grønl<strong>and</strong> idag – en <strong>in</strong>troduktion år 2000”. Copenhagen, <strong>Arctic</strong><br />

Information.<br />

Frich, A. S. (1997). ”Fuglelivet og dets udnyttelse på Grønne Ejl<strong>and</strong> i Vestgrønl<strong>and</strong>,<br />

juni 1996. Nuuk, Greenl<strong>and</strong>”. P<strong>in</strong>ngortitaleriffi k, Greenl<strong>and</strong> Institute <strong>of</strong> Natural<br />

Resources, Technical report 1, 19 pages.<br />

Friis-Rødel, E. <strong>and</strong> P. Kanneworff (2002). “A review <strong>of</strong> Capel<strong>in</strong> (Mallotus villosus) <strong>in</strong><br />

Greenl<strong>and</strong> waters”. ICES Journal <strong>of</strong> Mar<strong>in</strong>e Science 59: 890-896.<br />

Gaston, A. j. (2004). Seabirds: A Natural History. New Haven, Connecticut, Yale University<br />

Press.<br />

GSCD (2009). The Greenl<strong>and</strong> Seabird Colony Database. http://www.dmu.dk/Greenl<strong>and</strong>/Olie+og+Miljoe/Havfuglekolonier/<br />

accessed October 2009.<br />

Gudmundsson, G., T. Alerstam <strong>and</strong> B. Larsson (1992). “Radar observations <strong>of</strong> northbound<br />

migration <strong>of</strong> the <strong>Arctic</strong> tern, Sterna paradisaea, at the Antarctic Pen<strong>in</strong>sula”.<br />

Antarctic Science 4(2): 163-170.<br />

Guilford, T., J. Meade, J. Willis, R. A. Phillips, D. Boyle, S. Roberts, M. Collett, R. Freeman<br />

<strong>and</strong> C. M. Perr<strong>in</strong>s (2009). “<strong>Migration</strong> <strong>and</strong> stopover <strong>in</strong> a small pelagic seabird,<br />

the Manx shearwater Puffi nus puffi nus: <strong>in</strong>sights from mach<strong>in</strong>e learn<strong>in</strong>g”. Proceed<strong>in</strong>gs<br />

<strong>of</strong> The Royal Society, Biological Science 276: 1215-1223.<br />

Hake, M., N. Kjellén <strong>and</strong> T. Alerstam (2001). “Satellite track<strong>in</strong>g <strong>of</strong> Swedish Ospreys<br />

P<strong>and</strong>ion haliaetus: autumn migration routes <strong>and</strong> orientation”. Journal <strong>of</strong> Avian<br />

Biology 32: 47–56.<br />

Hatch, J. (2002). “<strong>Arctic</strong> Tern Sterna paradisaea”. The Birds <strong>of</strong> North America. 707: 1-40.<br />

Hjarsen, T. (2000). Diskobugten - Besigtigelses- og <strong>in</strong>formationstur 20 - 26 juni 2000.<br />

Nuuk, Grønl<strong>and</strong>s Hjemmestyre - Direktoratet for Miljø og Natur.<br />

Kampp, K. (1980). “Ornitologiske undersøgelser i Disko Bugt 1980”. Unpublished<br />

fi eld report.<br />

Kampp, K. (2001). “Seabird observations from the south <strong>and</strong> central Atlantic Ocean,<br />

Antarctica to 30°N, March–April 1998 <strong>and</strong> 2000”. Atlantic Seabirds 3: 1–14.<br />

Kilpi, M., K. L<strong>in</strong>dström <strong>and</strong> Wuor<strong>in</strong>en (1992). “A change <strong>in</strong> clutch size <strong>in</strong> <strong>Arctic</strong> Tern<br />

Sterna paradisaea <strong>in</strong> nothern Baltic”. Ornis Fennica 69: 88-91.<br />

Kullenberg, B. (1946). “Über verbreitung und w<strong>and</strong>erungen von vier Sterna-arten. [On<br />

the distribution <strong>and</strong> migrations <strong>of</strong> four Sterna species.] “ Arkiv Zoology 38: 1–80.<br />

Levermann, N. <strong>and</strong> A. P. Tøttrup (2007). “Predator Effect <strong>and</strong> Behavioral Pat<strong>terns</strong> <strong>in</strong><br />

<strong>Arctic</strong> Terns (Sterna paradisaea) <strong>and</strong> Sab<strong>in</strong>e’s Gulls (Xema sab<strong>in</strong>i) Dur<strong>in</strong>g a Failed<br />

Breed<strong>in</strong>g Year”. Waterbirds 30(3): 417-420.


Lloyd, C., Tasker, M.L. <strong>and</strong> Partridge, K. (1991). The status <strong>of</strong> seabirds <strong>in</strong> Brita<strong>in</strong> <strong>and</strong><br />

Irel<strong>and</strong>. T. & A.D.<br />

Wetl<strong>and</strong>s International (2006). Waterbird Population Estimates – Fourth Edition. Wetl<strong>and</strong>s<br />

International, Wagen<strong>in</strong>gen, The Netherl<strong>and</strong>s.<br />

Møller, A. P., E. Flensted-Jensen <strong>and</strong> W. Mardal (2006). “Rapidly advanc<strong>in</strong>g lay<strong>in</strong>g<br />

date <strong>in</strong> a seabird <strong>and</strong> the chang<strong>in</strong>g advantage <strong>of</strong> early reproduction”. Journal <strong>of</strong><br />

Animal Ecology 75(3): 657-665.<br />

Monaghan, P., J. D. Uttley, M. D. Burns, C. Tha<strong>in</strong>e <strong>and</strong> J. Blackwood (1989). “The relationship<br />

between food supply, reproductive effort <strong>and</strong> <strong>breed<strong>in</strong>g</strong> success <strong>in</strong> <strong>Arctic</strong><br />

Terns Sterna paradisaea”. Journal <strong>of</strong> Animal Ecology 58: 261-274.<br />

Monaghan, P., J. D. Uttley <strong>and</strong> J. D. Okill (1989). “Terns <strong>and</strong> s<strong>and</strong>ells: seabirds as <strong>in</strong>dicators<br />

<strong>of</strong> changes <strong>in</strong> mar<strong>in</strong>e fi sh populations”. Journal <strong>of</strong> Fish Biology 35 (supplement<br />

A): 339-340.<br />

Newton, I. (2008). The migration ecology <strong>of</strong> birds. London, Burl<strong>in</strong>gton, San Diego,<br />

Academic Press, Elsevier.<br />

Nguyen, L. P., K. F. Abraham <strong>and</strong> E. Nol (2006). “Infl uence <strong>of</strong> <strong>Arctic</strong> Terns on Survival<br />

<strong>of</strong> Artifi cial <strong>and</strong> Natural Semipalmated Plover Nests”. Waterbirds 20(1): 100-104.<br />

Pearson, T. H. (1968). “The Feed<strong>in</strong>g Biology <strong>of</strong> Seabird species Breed<strong>in</strong>g on the Farne<br />

Isl<strong>and</strong>s, Northumberl<strong>and</strong>”. Journal <strong>of</strong> Animal Ecology 37: 521-552.<br />

Phillips, R. A., J. R. D. Silk, J. P. Croxall, V. Afanasyev <strong>and</strong> D. R. Briggs (2004). “Accuracy<br />

<strong>of</strong> geolocation estimates for fl y<strong>in</strong>g seabirds”. Mar Ecol Prog Ser (266): 265–272.<br />

Ratcliffe, N. (2004). “<strong>Arctic</strong> Tern Sterna paradisaea”. Seabird Populations <strong>of</strong> Brita<strong>in</strong> <strong>and</strong><br />

Irel<strong>and</strong>. P. I. Mitchell, S. F. Newton, N. Ratcliffe <strong>and</strong> T. E. Dunn. London, T & A D<br />

Poyser: 328-338.<br />

Salomonsen, F. (1950). Grønl<strong>and</strong>s Fugle. The Birds <strong>of</strong> Greenl<strong>and</strong>. Copenhagen,<br />

Munksgaard.<br />

Salomonsen, F. (1967). “Migratory Movements <strong>of</strong> the <strong>Arctic</strong> Tern (Sterna paradisaea<br />

Pontoppidan) <strong>in</strong> the Southern Ocean”. Det Kongelige Danske Videnskabernes<br />

Selskab 24(1): 1-42.<br />

Shaffer, S. A., Y. Tremblay, H. Weimerskirch, D. Scott, D. R. Thompson, P. M. Sagar,<br />

H. Moller, G. A. Taylor, D. G. Foley, B. A. Block <strong>and</strong> D. P. Costa (2006). “Migratory<br />

Shearwaters Integrate Oceanic Resources across the Pacifi c Ocean <strong>in</strong> an Endless<br />

Summer”. Proceed<strong>in</strong>gs <strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the United States<br />

<strong>of</strong> America 103(34): 12799-12802.<br />

Smith, P. A., G. H. Gilchrist <strong>and</strong> J. N. M. Smith (2007). “Effect <strong>of</strong> nest habitat, food <strong>and</strong><br />

parental behaviour on shorebird nest success”. The Condor 109(1): 15-31.<br />

Storr, G. M. (1958). “<strong>Migration</strong> routes <strong>of</strong> the <strong>Arctic</strong> Tern”. Emu 1: 59–62.<br />

Suddaby, D. <strong>and</strong> N. Ratcliffe (1997). “The Effects <strong>of</strong> Fluctuat<strong>in</strong>g Food Availability on<br />

Breed<strong>in</strong>g <strong>Arctic</strong> Terns (Sterna paradisaea)”. Auk 114(3): 524-530.<br />

Summers, R. W. <strong>and</strong> M. Nicoll (2004). “Geographical variation <strong>in</strong> the <strong>breed<strong>in</strong>g</strong> <strong>biology</strong><br />

<strong>of</strong> the Purple S<strong>and</strong>piper Calidris maritima”. IBIS 146: 303–313.<br />

33


Manus I<br />

TRACKING OF ARCTIC TERNS<br />

STERNA PARADISAEA REVEALS<br />

LONGEST ANIMAL MIGRATION<br />

Carsten Egevang a,b , Ia<strong>in</strong> J. Stenhouse c , Richard A. Phillips d ,<br />

Aevar Petersen e , James W. Fox d <strong>and</strong> Janet R. D. Silk d<br />

a Greenl<strong>and</strong> Institute <strong>of</strong> Natural Resources<br />

DK-3900 Nuuk Greenl<strong>and</strong><br />

b National Environmental Research Institute<br />

Department <strong>of</strong> <strong>Arctic</strong> Environment, Aarhus University<br />

DK-4000 Roskilde, Denmark<br />

c Pol<strong>and</strong>, ME 04274<br />

d British Antarctic Survey<br />

Natural Environment Research Council, High Cross<br />

Cambridge CB3 0ET, United K<strong>in</strong>gdom<br />

e Icel<strong>and</strong>ic Institute <strong>of</strong> Natural History<br />

125 Reykjavik, Icel<strong>and</strong><br />

Proceed<strong>in</strong>gs <strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the United States. Vol. 107: 2078-2081


Track<strong>in</strong>g <strong>of</strong> <strong>Arctic</strong> <strong>terns</strong> Sterna paradisaea reveals<br />

longest animal migration<br />

Carsten Egevang a,b,1 , Ia<strong>in</strong> J. Stenhouse c , Richard A. Phillips d , Aevar Petersen e , James W. Fox d , <strong>and</strong> Janet R. D. Silk d<br />

a Greenl<strong>and</strong> Institute <strong>of</strong> Natural Resources, DK-3900 Nuuk Greenl<strong>and</strong>; b National Environmental Research Institute, Department <strong>of</strong> <strong>Arctic</strong> Environment, Aarhus<br />

University, DK-4000 Roskilde, Denmark; c Pol<strong>and</strong>, ME 04274; d British Antarctic Survey, Natural Environment Research Council, High Cross, Cambridge CB3 0ET,<br />

United K<strong>in</strong>gdom; <strong>and</strong> e Icel<strong>and</strong>ic Institute <strong>of</strong> Natural History, 125 Reykjavik, Icel<strong>and</strong><br />

Edited by Colleen Cassady St. Clair, University <strong>of</strong> Alberta, Edmonton, AB, Canada, <strong>and</strong> accepted by the Editorial Board December 11, 2009 (received for review<br />

August 20, 2009)<br />

The study <strong>of</strong> long-distance migration provides <strong>in</strong>sights <strong>in</strong>to the<br />

habits <strong>and</strong> performance <strong>of</strong> organisms at the limit <strong>of</strong> their physical<br />

abilities. The <strong>Arctic</strong> tern Sterna paradisaea is the epitome <strong>of</strong> such<br />

behavior; despite its small size (400 g) (3–7), neglect<strong>in</strong>g smaller species<br />

which, arguably, have even greater migratory capabilities <strong>and</strong> are<br />

potentially more sensitive <strong>in</strong>dicators <strong>of</strong> the status <strong>of</strong> mar<strong>in</strong>e<br />

ecosystems (8, 9). These <strong>in</strong>clude a species long regarded as the<br />

classic exponent <strong>of</strong> long-distance migration <strong>in</strong> vertebrates, the<br />

<strong>Arctic</strong> tern (Sterna paradisaea).<br />

The <strong>Arctic</strong> tern exhibits a circumpolar <strong>breed<strong>in</strong>g</strong> distribution at<br />

high latitudes <strong>of</strong> the northern hemisphere <strong>and</strong> w<strong>in</strong>ters at high<br />

latitudes <strong>in</strong> the southern hemisphere (10, 11). The species nests on<br />

the ground, <strong>and</strong> is an opportunistic plunge-div<strong>in</strong>g <strong>and</strong> surfacedipp<strong>in</strong>g<br />

feeder, with a diet compris<strong>in</strong>g ma<strong>in</strong>ly small fish <strong>and</strong> large<br />

zooplankton (12, 13). There were several early attempts to <strong>in</strong>fer its<br />

movements (14, 15), but the first comprehensive review (16) was<br />

presented by Salomonsen <strong>in</strong> 1967. He suggested that the ma<strong>in</strong><br />

w<strong>in</strong>ter<strong>in</strong>g areas were most likely to be <strong>of</strong>f the southern tip <strong>of</strong> Africa<br />

<strong>and</strong> South America, <strong>and</strong> that <strong>Arctic</strong> <strong>terns</strong> might circumnavigate<br />

the Antarctic cont<strong>in</strong>ent <strong>in</strong> early spr<strong>in</strong>g before <strong>in</strong>itiat<strong>in</strong>g their<br />

northbound migration. This appeared to be supported by subsequent<br />

radar <strong>and</strong> visual observations <strong>of</strong> <strong>terns</strong> migrat<strong>in</strong>g from the<br />

Bell<strong>in</strong>gshausen Sea to the Weddell Sea (17). It has been suggested<br />

that <strong>Arctic</strong> <strong>terns</strong> complete the southbound migration <strong>in</strong> a step-wise<br />

fashion, mov<strong>in</strong>g between rich feed<strong>in</strong>g grounds, <strong>and</strong> may use high<br />

altitude migration flights to cross large expanses <strong>of</strong> l<strong>and</strong>, such as<br />

the Greenl<strong>and</strong> ice sheet (18, 19). Until now, there was little<br />

<strong>in</strong>formation on the northward return to the colony, but it was<br />

36<br />

generally believed to start <strong>in</strong> March <strong>and</strong> occur more rapidly <strong>and</strong><br />

over a wider front (20, 21). Several authors (10, 11) have attempted<br />

to estimate the total distance traveled dur<strong>in</strong>g this impressive<br />

annual migration, typically quot<strong>in</strong>g a figure <strong>of</strong> 40,000 km.<br />

Although many (but not all) <strong>of</strong> these suppositions have subsequently<br />

proved correct, they were based on limited b<strong>and</strong><strong>in</strong>g<br />

recoveries <strong>and</strong> at-sea observations, <strong>and</strong> hence <strong>in</strong>evitably reflected a<br />

range <strong>of</strong> potential biases (<strong>in</strong>clud<strong>in</strong>g, respectively, spatial <strong>and</strong> temporal<br />

variability <strong>in</strong> recovery effort, <strong>and</strong> lack <strong>of</strong> <strong>in</strong>formation on<br />

provenance, age, <strong>and</strong> status <strong>of</strong> <strong>in</strong>dividuals). Nor could they provide<br />

<strong>in</strong>formation on variation among <strong>in</strong>dividuals <strong>and</strong> populations <strong>in</strong> the<br />

phenology <strong>of</strong> migration, flight paths, or preferred w<strong>in</strong>ter<strong>in</strong>g habitats.<br />

With the aim <strong>of</strong> provid<strong>in</strong>g much greater detail on <strong>in</strong>dividual movement<br />

pat<strong>terns</strong>, we developed m<strong>in</strong>iature (1.4-g) archival light loggers<br />

(geolocators) similar to those used <strong>in</strong> a recent study <strong>of</strong> passer<strong>in</strong>es<br />

(22), for deployment on <strong>Arctic</strong> <strong>terns</strong> at two <strong>Arctic</strong> colonies.<br />

Results <strong>and</strong> Discussion<br />

With an accuracy <strong>of</strong> ∼185 km <strong>in</strong> fly<strong>in</strong>g seabirds (23), the geolocators<br />

were used to document the migration routes, stopover<br />

sites, <strong>and</strong> w<strong>in</strong>ter<strong>in</strong>g areas <strong>of</strong> <strong>Arctic</strong> <strong>terns</strong> from colonies <strong>in</strong> high-<br />

<strong>Arctic</strong> Greenl<strong>and</strong> (n = 10) <strong>and</strong> <strong>Arctic</strong> Icel<strong>and</strong> (n = 1). At the end<br />

<strong>of</strong> the <strong>breed<strong>in</strong>g</strong> season, tagged birds traveled southwest to a<br />

stopover region <strong>of</strong> deep water <strong>in</strong> the eastern portion <strong>of</strong> the<br />

Newfoundl<strong>and</strong> Bas<strong>in</strong> <strong>and</strong> the western slope <strong>of</strong> the mid-North<br />

Atlantic Ridge between 41–53° N <strong>and</strong> 27–41° W, <strong>in</strong> which they<br />

rema<strong>in</strong>ed for an average ± SD <strong>of</strong> 24.6 ± 6 days (Fig. 1). This<br />

previously unknown oceanic hotspot for <strong>terns</strong> was located at the<br />

junction between cold, highly productive northern water <strong>and</strong><br />

warmer, less-productive southern water, <strong>and</strong> was characterized by<br />

high Chl. a concentrations <strong>and</strong> high eddy variability (24, 25).<br />

Between 5 <strong>and</strong> 22 September 2007, all 11 birds cont<strong>in</strong>ued their<br />

migration southeast toward the West African coast. South <strong>of</strong> the<br />

Cape Verde Isl<strong>and</strong>s (∼10° N), however, migration routes diverged:<br />

seven birds cont<strong>in</strong>ued to fly south parallel to the African coast,<br />

whereas four others crossed the Atlantic to follow the east coast <strong>of</strong><br />

Brazil. Birds <strong>in</strong> both groups ceased their directed southbound<br />

transits at ∼38–40° S, <strong>and</strong> shifted to a pattern <strong>of</strong> predom<strong>in</strong>antly<br />

east–west movements. Three birds then traveled east <strong>in</strong>to the<br />

Indian Ocean (one as far as 106° E). All birds subsequently moved<br />

south, spend<strong>in</strong>g the austral summer (December–March) south <strong>of</strong><br />

58° S <strong>and</strong> between 0 <strong>and</strong> 61° W <strong>in</strong> the Atlantic sector <strong>of</strong> the<br />

Southern Ocean. This region, which <strong>in</strong>cludes the Weddell Sea, is<br />

particularly productive, <strong>and</strong> supports higher densities <strong>of</strong> a key prey<br />

Author contributions: C.E., R.A.P., A.P., <strong>and</strong> J.W.F. designed research; C.E., I.J.S., <strong>and</strong> A.P.<br />

performed research; C.E., I.J.S., R.A.P., <strong>and</strong> J.R.D.S. analyzed data; <strong>and</strong> C.E., I.J.S., R.A.P.,<br />

A.P., J.W.F., <strong>and</strong> J.R.D.S. wrote the paper.<br />

The authors declare no conflict <strong>of</strong> <strong>in</strong>terest.<br />

This article is a PNAS Direct Submission. C.C.S. is a guest editor <strong>in</strong>vited by the<br />

Editorial Board.<br />

Freely available onl<strong>in</strong>e through the PNAS open access option.<br />

1<br />

To whom correspondence should be addressed. E-mail: cep@dmu.dk.<br />

www.pnas.org/cgi/doi/10.1073/pnas.0909493107 PNAS Early Edition | 1<strong>of</strong>4<br />

ECOLOGY


Fig. 1. Interpolated geolocation tracks <strong>of</strong> 11 <strong>Arctic</strong> <strong>terns</strong> tracked from <strong>breed<strong>in</strong>g</strong> colonies <strong>in</strong> Greenl<strong>and</strong> (n = 10 birds) <strong>and</strong> Icel<strong>and</strong> (n = 1 bird). Green = autumn<br />

(post<strong>breed<strong>in</strong>g</strong>) migration (August–November), red = w<strong>in</strong>ter range (December–March), <strong>and</strong> yellow = spr<strong>in</strong>g (return) migration (April–May). Two southbound<br />

migration routes were adopted <strong>in</strong> the South Atlantic, either (A) West African coast (n = 7 birds) or (B) Brazilian coast. Dotted l<strong>in</strong>es l<strong>in</strong>k locations dur<strong>in</strong>g the<br />

equ<strong>in</strong>oxes.<br />

for many seabirds, Antarctic krill (Euphausia superba), than elsewhere<br />

<strong>in</strong> the Southern Ocean (26).<br />

All birds began the return migration to <strong>breed<strong>in</strong>g</strong> colonies <strong>in</strong><br />

early–mid April, always travel<strong>in</strong>g over deep water at considerable<br />

distance from cont<strong>in</strong>ental shelf marg<strong>in</strong>s, <strong>and</strong> tak<strong>in</strong>g a sigmoidal<br />

route, counterclockwise around the South Atlantic <strong>and</strong> clockwise<br />

around the North Atlantic gyres. Upon return <strong>in</strong> late May to the<br />

same general stopover region <strong>in</strong> the North Atlantic used dur<strong>in</strong>g<br />

the southbound migration, two <strong>in</strong>dividuals transited rapidly west<br />

through the area, three rema<strong>in</strong>ed there for 3–6 days before<br />

cont<strong>in</strong>u<strong>in</strong>g to the north, <strong>and</strong> the rema<strong>in</strong><strong>in</strong>g five birds appeared<br />

not to pause or deviate from their general course. Thus, there<br />

was little <strong>in</strong>dication that the area was particularly important for<br />

northbound <strong>terns</strong>. Although the <strong>Arctic</strong> tern from Icel<strong>and</strong> began<br />

its outbound <strong>and</strong> return migration earlier than the Greenl<strong>and</strong><strong>breed<strong>in</strong>g</strong><br />

birds (Table 1), there was no obvious difference <strong>in</strong><br />

migration routes between this <strong>in</strong>dividual <strong>and</strong> some <strong>of</strong> the <strong>terns</strong><br />

from Greenl<strong>and</strong>. Thus, the emerg<strong>in</strong>g pattern for transequatorial<br />

migrants is <strong>of</strong> a high degree <strong>of</strong> mix<strong>in</strong>g <strong>of</strong> birds from different<br />

<strong>breed<strong>in</strong>g</strong> populations <strong>in</strong> w<strong>in</strong>ter<strong>in</strong>g areas, as evident <strong>in</strong> this study<br />

<strong>and</strong> previous ones (5, 7, 27). This contrasts with the dom<strong>in</strong>ant<br />

strategies <strong>of</strong> southern hemisphere albatrosses, which, despite a<br />

similar capacity for long-distance migration <strong>and</strong> hence overlap,<br />

nevertheless tend to show a high degree <strong>of</strong> between-population<br />

segregation <strong>in</strong> non<strong>breed<strong>in</strong>g</strong> distributions (28).<br />

The Greenl<strong>and</strong>ic birds exhibited clear synchrony <strong>in</strong> tim<strong>in</strong>g <strong>of</strong><br />

migration, all reach<strong>in</strong>g the North Atlantic stopover site,<br />

depart<strong>in</strong>g the w<strong>in</strong>ter<strong>in</strong>g area <strong>and</strong> cross<strong>in</strong>g the Equator with<strong>in</strong> a<br />

few days <strong>of</strong> each other (Table 1), but there was no <strong>in</strong>dication that<br />

they traveled together <strong>in</strong> the same flocks. Similarly, at-sea<br />

observations suggest that flock sizes <strong>of</strong> migrat<strong>in</strong>g <strong>terns</strong> are typically<br />

very small (


migration from Antarctica to south Greenl<strong>and</strong> (c. 60° N), an<br />

average distance <strong>of</strong> 24,270 km (range 20,070–27,790 km) covered<br />

<strong>in</strong> only 40 days (range 36–46 days), with average travel distances<br />

<strong>of</strong> 520 km·day −1 (range 390–670 km·day −1 ). As birds seem to<br />

have been exploit<strong>in</strong>g favorable w<strong>in</strong>ds, travel (ground) speed will<br />

be higher than air speed. Nevertheless these flight speeds are <strong>of</strong><br />

the same order as the maximum range speed (9.7 ms −1 ) calculated<br />

from aerodynamics theory, <strong>and</strong> mean groundspeeds<br />

observed us<strong>in</strong>g radar (11.3 ms −1 ) (17), which would correspond<br />

to 838 <strong>and</strong> 976 km·day −1 , respectively, if birds were to fly nonstop<br />

(which is, <strong>of</strong> course, unlikely). Overall, the northbound migration<br />

took less than half the time (40 vs. 93 days), despite be<strong>in</strong>g three<br />

quarters the length (25,700 vs. 34,600 km) <strong>of</strong> the southbound<br />

journey. Indeed, the average annual distance traveled, from<br />

depart<strong>in</strong>g the <strong>breed<strong>in</strong>g</strong> site <strong>in</strong> August to return <strong>in</strong> late May/early<br />

June (i.e., exclud<strong>in</strong>g movements with<strong>in</strong> the <strong>breed<strong>in</strong>g</strong> season) was<br />

70,900 km (range 59,500–81,600 km). This is the longest roundtrip<br />

animal migration ever recorded electronically (3, 5, 7). As<br />

our estimates <strong>of</strong> travel distance, <strong>and</strong> hence speed, were affected<br />

by the fractal dimension <strong>of</strong> the flight path (i.e., the step length for<br />

the distance measurements) (30), <strong>and</strong> by the considerable errors<br />

<strong>in</strong>herent <strong>in</strong> geolocation (23), they are not directly comparable<br />

with previous studies. Nevertheless, the tracked birds were considered<br />

to travel nearly twice the total distance generally cited<br />

for the annual <strong>Arctic</strong> tern migration. As <strong>Arctic</strong> <strong>terns</strong> can live for<br />

more than 30 years (31), the total distance traveled <strong>in</strong> a lifetime<br />

may exceed 2.4 million km, equivalent to approximately three<br />

return journeys to the Moon.<br />

Our study demonstrated heterogeneity <strong>in</strong> migration routes with<strong>in</strong><br />

a population, yet clear migratory connectivity between populations.<br />

We confirmed that the ma<strong>in</strong> w<strong>in</strong>ter<strong>in</strong>g region was the marg<strong>in</strong>al ice<br />

zone around Antarctica, which agrees with at-sea observations (ref.<br />

18 <strong>and</strong> references there<strong>in</strong>). Given that the highest densities <strong>of</strong><br />

<strong>Arctic</strong> <strong>terns</strong> <strong>in</strong> the Southern Ocean have been observed <strong>in</strong> the<br />

Weddell Sea (17), <strong>and</strong> that a very high (likely >50%) proportion <strong>of</strong><br />

the worlds <strong>Arctic</strong> <strong>terns</strong> breed <strong>in</strong> Greenl<strong>and</strong> <strong>and</strong> Icel<strong>and</strong> (13), the<br />

w<strong>in</strong>ter<strong>in</strong>g areas used by our tracked birds may well be typical <strong>of</strong> the<br />

majority <strong>of</strong> the North Atlantic population. Thus, the long-term<br />

changes <strong>in</strong> duration <strong>and</strong> extent <strong>of</strong> w<strong>in</strong>ter sea ice, <strong>and</strong> decl<strong>in</strong>es <strong>in</strong><br />

abundance <strong>of</strong> Antarctic krill <strong>in</strong> this region (26, 32) should be viewed<br />

with considerable concern.<br />

Material <strong>and</strong> Methods<br />

We fitted m<strong>in</strong>iature archival light loggers (Mk14 geolocators, mass 1.4 g;<br />

British Antarctic Survey), attached to plastic leg r<strong>in</strong>gs (mass <strong>of</strong> logger, r<strong>in</strong>g,<br />

tape, <strong>and</strong> cable tie: 2.0 g, ∼1.9% <strong>of</strong> adult body mass), to 50 <strong>breed<strong>in</strong>g</strong> <strong>Arctic</strong><br />

<strong>terns</strong> <strong>in</strong> July 2007 at S<strong>and</strong> Isl<strong>and</strong> (74° 43′ N, 20° 27′ W), Young Sound,<br />

Northeast Greenl<strong>and</strong>. An additional 20 geolocators were deployed on <strong>Arctic</strong><br />

<strong>terns</strong> at Flatey Isl<strong>and</strong> (65° 22′N; 22° 55′W), Breiðafjörður, Icel<strong>and</strong>, <strong>in</strong> June<br />

2007. The follow<strong>in</strong>g season, a m<strong>in</strong>imum <strong>of</strong> 21 birds equipped with loggers<br />

(>42%) were observed at S<strong>and</strong> Isl<strong>and</strong>, but only 10 loggers (20%) were<br />

retrieved. At Flatey Isl<strong>and</strong>, four birds were resighted (20%), <strong>and</strong> one (5%)<br />

logger was retrieved. All recaptured birds were <strong>in</strong> good physical condition<br />

1. Block BA, et al. (2005) Electronic tagg<strong>in</strong>g <strong>and</strong> population structure <strong>of</strong> Atlantic bluef<strong>in</strong><br />

tuna. Nature 434:1121–1127.<br />

38<br />

Table 2. Summary <strong>of</strong> distances traveled dur<strong>in</strong>g migration stages <strong>of</strong> <strong>Arctic</strong> <strong>terns</strong> (Greenl<strong>and</strong> <strong>and</strong><br />

Icel<strong>and</strong> birds comb<strong>in</strong>ed, n = 11)<br />

<strong>Migration</strong> segment Distance traveled<br />

Total distance traveled on migration 70,900 km (59,500–81,600 km)<br />

Distance traveled on southbound migration 34,600 km (28,800–38,500 km)<br />

Distance traveled per day on southbound migration 330 km·day −1 (280–390 km·day −1 )<br />

Distance traveled on northbound migration 25,700 km (21,400–34,900 km)<br />

Distance traveled per day on northbound migration 520 km·day −1 (390–670 km·day −1 )<br />

Distance traveled with<strong>in</strong> w<strong>in</strong>ter site 10,900 km (2,700–21,600 km)<br />

<strong>and</strong> no significant difference (t = −1.57, P = 0.133, df = 18, n = 10) could be<br />

detected <strong>in</strong> their body mass between the 2 years (mean ± SD <strong>in</strong> 2007 <strong>and</strong><br />

2008: 106.0 g ± 6.3 <strong>and</strong> 110.3 ± 6.0, respectively). The average clutch size <strong>of</strong><br />

<strong>breed<strong>in</strong>g</strong> pairs <strong>in</strong> 2008 at S<strong>and</strong> Isl<strong>and</strong> equipped with loggers was 1.3 (± 0.43,<br />

n = 8), whereas clutch size <strong>in</strong> control birds the same year was 1.7 (±0.48, n =<br />

60). Although poor <strong>in</strong> power <strong>of</strong> analysis because <strong>of</strong> low sample size <strong>in</strong> the<br />

logger group, a one-sided Fisher’s exact test <strong>in</strong>dicated no statistical difference<br />

(P = 0.038) between the two groups. Not all birds observed at colonies<br />

<strong>in</strong> 2008 could be recaptured; some birds were clearly <strong>breed<strong>in</strong>g</strong>, but the nest<br />

could not be located or the targeted bird would not enter the trap; others<br />

were likely to be nonbreeders or failed breeders, which are very difficult to<br />

capture. In one case (Icel<strong>and</strong>), the nest <strong>of</strong> an equipped bird was ab<strong>and</strong>oned<br />

after be<strong>in</strong>g trampled by domestic sheep before the bird could be trapped.<br />

Although fidelity at the regional level is high <strong>in</strong> nest<strong>in</strong>g <strong>Arctic</strong> <strong>terns</strong> (33),<br />

dispersal to neighbor<strong>in</strong>g <strong>breed<strong>in</strong>g</strong> colonies occurs frequently (33–36) <strong>and</strong> is<br />

likely driven by food availability, presence <strong>of</strong> predators, disturbance, or<br />

chang<strong>in</strong>g climatic conditions. The only study to apply modern capture–<br />

mark–recapture techniques to adult <strong>Arctic</strong> <strong>terns</strong> showed a low reencounter<br />

probability, rang<strong>in</strong>g from 0.12 to 0.74, depend<strong>in</strong>g on colony <strong>and</strong> year (33).<br />

Ten <strong>of</strong> the 11 loggers retrieved were downloaded successfully, provid<strong>in</strong>g a<br />

full year <strong>of</strong> migration data (July 2007 to July 2008). Six months <strong>of</strong> migration<br />

data were extracted from the rema<strong>in</strong><strong>in</strong>g logger. Light data were processed<br />

follow<strong>in</strong>g the approach <strong>of</strong> Phillips et al. (23). Times <strong>of</strong> sunrise <strong>and</strong> sunset were<br />

calculated from light records <strong>and</strong> converted to location estimates us<strong>in</strong>g<br />

TransEdit <strong>and</strong> BirdTracker (British Antarctic Survey) us<strong>in</strong>g thresholds <strong>of</strong> 10,<br />

an angle <strong>of</strong> elevation <strong>of</strong> −4.7°, <strong>and</strong> apply<strong>in</strong>g the compensation for movement.<br />

Locations were unavailable at periods <strong>of</strong> the year when birds were at<br />

very high latitudes <strong>and</strong> experienc<strong>in</strong>g 24 h daylight. In addition, only longitudes<br />

were available around equ<strong>in</strong>oxes, when day length is similar<br />

throughout the world. Overall, after omitt<strong>in</strong>g periods with light level<br />

<strong>in</strong>terference <strong>and</strong> periods around equ<strong>in</strong>oxes, the filtered data sets conta<strong>in</strong>ed<br />

between 166 <strong>and</strong> 242 days <strong>of</strong> locations for each <strong>in</strong>dividual (mean = 207.2<br />

days, SD = 20.58, n = 10). The data set conta<strong>in</strong>ed two daily positions, after<br />

fitt<strong>in</strong>g po<strong>in</strong>ts to a smooth l<strong>in</strong>e, travel distances were calculated <strong>in</strong> ArcMap<br />

(ESRI) us<strong>in</strong>g great circle distances (Table 2). A straight-l<strong>in</strong>e path was assumed<br />

between the preced<strong>in</strong>g <strong>and</strong> succeed<strong>in</strong>g valid fix around periods when<br />

locations were unavailable (discussed above). The only exceptions were<br />

dur<strong>in</strong>g the autumn migration around the west African coast, where it was<br />

assumed that birds did not cross l<strong>and</strong> <strong>and</strong> the projected route was altered to<br />

follow the coast, <strong>and</strong> for movement north <strong>and</strong> south to the <strong>breed<strong>in</strong>g</strong> colonies<br />

<strong>in</strong> Greenl<strong>and</strong> <strong>and</strong> Icel<strong>and</strong> from 60° N. As positions obta<strong>in</strong>ed from<br />

geolocators exhibit a relatively low accuracy, we used a conservative<br />

approach when calculat<strong>in</strong>g distances <strong>and</strong> speed, <strong>and</strong> hence values presented<br />

here should be regarded as m<strong>in</strong>imum estimates. Great-circle distances were<br />

calculated us<strong>in</strong>g the mean <strong>of</strong> the two daily positions, <strong>in</strong>terpolat<strong>in</strong>g between<br />

adjacent valid locations across periods when data were unavailable because<br />

<strong>of</strong> proximity to the equ<strong>in</strong>ox or light level <strong>in</strong>terference. Stopover sites were<br />

identified follow<strong>in</strong>g the approach <strong>of</strong> Guilford et al. (6); where latitud<strong>in</strong>al<br />

movements were


3. Croxall JP, Silk JRD, Phillips RA, Afanasyev V, Briggs DR (2005) Global circumnavigations:<br />

Track<strong>in</strong>g year-round ranges <strong>of</strong> non-<strong>breed<strong>in</strong>g</strong> albatrosses. Science 307:249–250.<br />

4. Weimerskirch H, Wilson RP (2000) Oceanic respite for w<strong>and</strong>er<strong>in</strong>g albatrosses. Nature<br />

406:955–956.<br />

5. González-Solís J, Croxall JP, Oro D, Ruiz X (2007) Trans-equatorial migration <strong>and</strong><br />

mix<strong>in</strong>g <strong>in</strong> the w<strong>in</strong>ter<strong>in</strong>g areas <strong>of</strong> a pelagic seabird. Front Ecol Environ 5:297–301.<br />

6. Guilford T, et al. (2009) <strong>Migration</strong> <strong>and</strong> stopover <strong>in</strong> a small pelagic seabird, the Manx<br />

shearwater Puff<strong>in</strong>us puff<strong>in</strong>us: Insights from mach<strong>in</strong>e learn<strong>in</strong>g. Proc R Soc B Biol Sci<br />

276:1215–1223.<br />

7. Shaffer SA, et al. (2006) Migratory shearwaters <strong>in</strong>tegrate oceanic resources across the<br />

Pacific Ocean <strong>in</strong> an endless summer. Proc Natl Acad Sci USA 103:12799–12802.<br />

8. E<strong>in</strong>oder LD (2009) A review <strong>of</strong> the use <strong>of</strong> seabirds as <strong>in</strong>dicators <strong>in</strong> fisheries <strong>and</strong><br />

ecosystem management. Fish Res 95:6–13.<br />

9. Furness RW, Tasker ML (2000) Seabird-fishery <strong>in</strong>teractions: Quantify<strong>in</strong>g the sensitivity<br />

<strong>of</strong> seabirds to reductions <strong>in</strong> s<strong>and</strong>eel abundance, <strong>and</strong> identification <strong>of</strong> key areas for<br />

sensitive seabirds <strong>in</strong> the North Sea. Mar Ecol Prog Ser 202:253–264.<br />

10. Berthold P (2001) Bird <strong>Migration</strong>: A General Survey (Oxford University Press, USA),<br />

2nd Ed.<br />

11. Newton I (2008) The <strong>Migration</strong> Ecology <strong>of</strong> Birds (Academic Press, Elsevier, London).<br />

12. Hatch H (2002) (Sterna paradisaea). The Birds <strong>of</strong> North America, No. 707 (<strong>Arctic</strong> Tern)<br />

(Philadelphia).<br />

13. Cramp S, ed (1985) Terns to Woodpeckers. Birds <strong>of</strong> the Western Palearctic (Oxford<br />

University Press), Vol IV.<br />

14. Kullenberg B (1946) Über verbreitung und w<strong>and</strong>erungen von vier Sterna-arten. Arkiv<br />

Zool. 38:1–80.<br />

15. Storr GM (1958) <strong>Migration</strong> routes <strong>of</strong> the <strong>Arctic</strong> tern. Emu 1:59–62.<br />

16. Salomonsen F (1967) Migratory movements <strong>of</strong> the arctic tern (Sterna paradisaea<br />

Pontoppidan) <strong>in</strong> the Southern Ocean. Biol Medd Dan Vid Selsk 24:1–42.<br />

17. Gudmundsson GA, Alerstam T, Larsson B (1992) Radar observations <strong>of</strong> northbound<br />

migration <strong>of</strong> the <strong>Arctic</strong> tern, Sterna paradisaea, at the Antarctic Pen<strong>in</strong>sula. Antarct Sci<br />

4:163–170.<br />

18. Alerstam T (1985) Strategies <strong>of</strong> migratory flight, illustrated by arctic <strong>and</strong> common<br />

<strong>terns</strong>, Sterna paradisaea <strong>and</strong> Sterna hirundo. Contrib Mar Sci 27 (Suppl):580–603.<br />

19. Alerstam T, et al. (1986) Spr<strong>in</strong>g migration <strong>of</strong> birds across the Greenl<strong>and</strong> Inl<strong>and</strong>ice.<br />

Meddr Grønl<strong>and</strong> Biosci 21:1–38.<br />

20. Kampp K (2001) Seabird observations from the south <strong>and</strong> central Atlantic Ocean,<br />

Antarctica to 30°N, March–April 1998 <strong>and</strong> 2000. Atlantic Seabirds 3:1–14.<br />

21. Bourne WRP, Casement MB (1996) The migrations <strong>of</strong> the <strong>Arctic</strong> tern. Bull Br Ornithol<br />

Club 116:117–123.<br />

22. Stutchbury BJM, et al. (2009) Track<strong>in</strong>g long-distance songbird migration by us<strong>in</strong>g<br />

geolocators. Science 323:896.<br />

23. Phillips RA, Silk JRD, Croxall JP, Afanasyev V, Briggs DR (2004) Accuracy <strong>of</strong> geolocation<br />

estimates for fly<strong>in</strong>g seabirds. Mar Ecol Prog Ser 266:265–272.<br />

24. National Aeronautics <strong>and</strong> Space Adm<strong>in</strong>istration. NASA Earth Observations. Available<br />

at http://neo.sci.gsfc.nasa.gov, accessed February 2009.<br />

25. National Aeronautics <strong>and</strong> Space Adm<strong>in</strong>istration. MODIS satellite data, NASA SeaWiFS<br />

Project. Available at http://oceancolor.gsfc.nasa.gov/, accessed February 2009.<br />

26. Atk<strong>in</strong>son A, Siegel V, Pakhomov E, Rothery P (2004) Long-term decl<strong>in</strong>e <strong>in</strong> krill stock<br />

<strong>and</strong> <strong>in</strong>crease <strong>in</strong> salps with<strong>in</strong> the Southern Ocean. Nature 432:100–103.<br />

27. Felicísimo ÁM, Muñoz J, González-Solis J (2008) Ocean surface w<strong>in</strong>ds drive dynamics<br />

<strong>of</strong> transoceanic aerial movements. PLoS One 3:e2928.<br />

28. Phillips RA, Croxall JP, Silk JRD, Briggs DR (2008) Forag<strong>in</strong>g ecology <strong>of</strong> albatrosses <strong>and</strong><br />

petrels from South Georgia: Two decades <strong>of</strong> <strong>in</strong>sights from track<strong>in</strong>g technologies.<br />

Aquat Conserv Mar Freshwat Ecosyst 17:S6–S21.<br />

29. Elk<strong>in</strong>s N (1988) Weather <strong>and</strong> Bird Behaviour (Poyser, Calton).<br />

30. Turch<strong>in</strong> P (1998) Quantitative Analysis <strong>of</strong> Movement: Measur<strong>in</strong>g <strong>and</strong> Model<strong>in</strong>g<br />

Population Redistribution <strong>in</strong> Animals <strong>and</strong> Plants (S<strong>in</strong>auer Associates, Sunderl<strong>and</strong>,<br />

MA).<br />

31. Hatch JJ (1974) Longevity record for the <strong>Arctic</strong> tern. Bird-B<strong>and</strong><strong>in</strong>g 45:269–270.<br />

32. Rau GH, A<strong>in</strong>ley DG, Bengtson JL, Torres JJ, Hopk<strong>in</strong>s TL (1992) 15 N/ 14 N <strong>and</strong> 13 C/ 12 C<strong>in</strong><br />

Weddell Sea birds, seals <strong>and</strong> fish: Implications for diet <strong>and</strong> trophic structure. Mar Ecol<br />

Prog Ser 84:1–8.<br />

33. Devl<strong>in</strong> CM, Diamond AW, Kress SW, Hall CS, Welch L (2008) Breed<strong>in</strong>g dispersal <strong>and</strong><br />

survival <strong>of</strong> <strong>Arctic</strong> <strong>terns</strong> (Sterna paradisaea) nest<strong>in</strong>g <strong>in</strong> the Gulf <strong>of</strong> Ma<strong>in</strong>e. Auk 125:<br />

850–858.<br />

34. Møller AP, Flensted-Jensen E, Mardal W (2006) Dispersal <strong>and</strong> climate change: A case<br />

study <strong>of</strong> the <strong>Arctic</strong> tern Sterna paradisaea. Glob Change Biol 12:2005–2013.<br />

35. Br<strong>in</strong>dley EG, at al (1999) The status <strong>of</strong> <strong>Arctic</strong> <strong>terns</strong> Sterna paradisaea at Shetl<strong>and</strong> <strong>and</strong><br />

Orkney <strong>in</strong> 1994. Atlantic Seabirds 1:135–143.<br />

36. Ratcliffe N (2004) <strong>Arctic</strong> tern Sterna paradisaea. Seabird Populations <strong>of</strong> Brita<strong>in</strong><br />

<strong>and</strong> Irel<strong>and</strong>, eds Mitchell PI, Newton SF, Ratcliffe N, Dunn TE (Poyser, London), pp<br />

328–338.<br />

4<strong>of</strong>4 | www.pnas.org/cgi/doi/10.1073/pnas.0909493107 Egevang et al.<br />

39


Manus II<br />

SUSTAINABLE REGULATION OF ARCTIC<br />

TERN EGG HARVESTING IN GREENLAND<br />

Carsten Egevang 1 , Norman Ratcliff e 2 <strong>and</strong> Morten Frederiksen 3<br />

1 Greenl<strong>and</strong> Institute <strong>of</strong> Natural Resources, Postbox 570, DK-3900 Nuuk, Greenl<strong>and</strong><br />

E-mail: cep@dmu.dk<br />

2 British Antarctic Survey, High Cross, Cambridge, CB3 0ET, United K<strong>in</strong>gdom<br />

3 National Environmental Research Institute, Department <strong>of</strong> <strong>Arctic</strong> Environment,<br />

Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark<br />

Manuscript


42<br />

Susta<strong>in</strong>able regulation <strong>of</strong> <strong>Arctic</strong> tern egg<br />

harvest<strong>in</strong>g <strong>in</strong> Greenl<strong>and</strong><br />

Carsten Egevang 1 , Norman Ratcliff e 2 <strong>and</strong> Morten Frederiksen 3<br />

1Greenl<strong>and</strong> Institute <strong>of</strong> Natural Resources, Postbox 570, DK-3900 Nuuk, Greenl<strong>and</strong>,<br />

E-mail: cep@dmu.dk<br />

2 British Antarctic Survey, High Cross, Cambridge, CB3 0ET, United K<strong>in</strong>gdom<br />

3 National Environmental Research Institute, Department <strong>of</strong> <strong>Arctic</strong> Environment,<br />

Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark<br />

Abstract<br />

The <strong>Arctic</strong> tern population <strong>in</strong> West Greenl<strong>and</strong> is likely to have undergone<br />

a severe decl<strong>in</strong>e s<strong>in</strong>ce mid 20 th century. This decl<strong>in</strong>e has been suggested<br />

to be a consequence <strong>of</strong> an unsusta<strong>in</strong>able egg harvest conducted by local<br />

Inuit. In this study we model <strong>breed<strong>in</strong>g</strong> parameters obta<strong>in</strong>ed over a fi ve<br />

year period at the largest <strong>Arctic</strong> tern colony <strong>in</strong> Greenl<strong>and</strong>, Kitsissunnguit<br />

to predict the impact <strong>of</strong> harvest on the local population. The model <strong>in</strong>corporates<br />

estimates <strong>of</strong> nest <strong>and</strong> chick survival to fl edg<strong>in</strong>g, clutch size <strong>in</strong><br />

both “normal” <strong>and</strong> replacement nests to predict how harvest size <strong>and</strong> the<br />

impact on reproduction varies with harvest effort, duration <strong>and</strong> start date.<br />

Model output <strong>in</strong>dicates the least impact on the <strong>Arctic</strong> tern population if<br />

harvest is conducted early <strong>in</strong> the season. Effort (man hours spent harvest<strong>in</strong>g)<br />

governs the total number <strong>of</strong> eggs removed from the population<br />

whereas duration <strong>of</strong> the harvest only has a m<strong>in</strong>or impact. A Impact- Harvest<br />

Ratio helped us determ<strong>in</strong>e a time period where egg were available<br />

to harvesters but where the harvest would only have m<strong>in</strong>or impact as the<br />

birds were allowed to relay. Based on model output, we recommend that<br />

an <strong>Arctic</strong> tern egg harvest at Kitsissunnguit with the least impact should<br />

be conducted early <strong>in</strong> the <strong>breed<strong>in</strong>g</strong> season preferably with 1) a stopp<strong>in</strong>g<br />

date before 10 June or 2) a harvest carried out dur<strong>in</strong>g one day. An open<strong>in</strong>g<br />

<strong>of</strong> egg harvest at Kitsissunnguit should be followed by monitor<strong>in</strong>g<br />

<strong>of</strong> population size <strong>and</strong> fl edg<strong>in</strong>g success at both affected <strong>and</strong> unaffected<br />

isl<strong>and</strong>s <strong>in</strong> the archipelago. In the context <strong>of</strong> the model output, the former<br />

clos<strong>in</strong>g date (1 July) <strong>in</strong> the Greenl<strong>and</strong> <strong>Arctic</strong> tern harvest has probably<br />

caused high impact on reproduction <strong>and</strong> it seems plausible that this may<br />

have caused a population decl<strong>in</strong>e.<br />

Key words: Seabirds, <strong>Arctic</strong> Tern, Sterna paradisaea, <strong>Arctic</strong>, Greenl<strong>and</strong>, egg<br />

harvest, model, susta<strong>in</strong>able use, regulation.


Introduction<br />

Harvest<strong>in</strong>g <strong>of</strong> seabird eggs, chicks <strong>and</strong> adults is widespread across most<br />

parts <strong>of</strong> the world. Seabirds are harvested for subsistence, <strong>in</strong>come <strong>and</strong><br />

recreation, which can cause additive mortality <strong>and</strong> population decl<strong>in</strong>es<br />

(Moller 2006, Nettleship et al. 1994). Seabird life histories are characterized<br />

by high adult survival, low annual reproductive rates <strong>and</strong> delayed maturation<br />

(Croxall et al. 1984, Furness <strong>and</strong> Monaghan 1987). This makes seabirds<br />

as a group particularly vulnerable to overexploitation. Furthermore,<br />

seabirds <strong>of</strong>ten aggregate at high densities <strong>in</strong> predictable colony locations<br />

which make harvest<strong>in</strong>g <strong>of</strong> a large proportion <strong>of</strong> the population easier than<br />

would be the case <strong>in</strong> dispersed or mobile species (Coulson 2002). The remoteness<br />

<strong>of</strong> many seabird colonies also means that monitor<strong>in</strong>g, <strong>and</strong> enforcement<br />

<strong>of</strong> regulations, is diffi cult to conduct.<br />

In the past, the collection <strong>of</strong> seabird products, such as eggs, chicks <strong>and</strong><br />

adults for food <strong>and</strong> feathers for <strong>in</strong>sulation was fundamental to the survival<br />

<strong>of</strong> <strong>in</strong>digenous human communities. Today, reliance on seabirds as a resource<br />

has lessened, yet harvest<strong>in</strong>g is still valued by <strong>in</strong>digenous people as<br />

part <strong>of</strong> their cultural heritage <strong>and</strong> ethnic identity. This has led to confl icts<br />

between conservationists <strong>and</strong> <strong>in</strong>digenous people, but their aspirations are<br />

not mutually exclusive provided harvests are managed <strong>in</strong> a susta<strong>in</strong>able<br />

manner. Achiev<strong>in</strong>g this can be a major challenge ow<strong>in</strong>g to compensatory<br />

demographic mechanisms that can buffer populations aga<strong>in</strong>st harvest<strong>in</strong>g<br />

mortality. Design<strong>in</strong>g susta<strong>in</strong>able harvest<strong>in</strong>g regulations therefore requires<br />

estimation <strong>of</strong> key demographic parameters <strong>and</strong> simulation modell<strong>in</strong>g <strong>of</strong><br />

various management options.<br />

In modern Greenl<strong>and</strong>, seabird harvest<strong>in</strong>g is still important with approximately<br />

150,000 birds, ma<strong>in</strong>ly Brünnich’s guillemots (Uria lomvia) <strong>and</strong> common<br />

eider (Somateria mollissima) shot annually dur<strong>in</strong>g w<strong>in</strong>ter (Merkel <strong>and</strong><br />

Barry 2008). Before new harvest regulations were <strong>in</strong>troduced <strong>in</strong> 2002, the<br />

seabird harvest level caused concern <strong>and</strong> strong criticism from conservationists<br />

<strong>and</strong> non-government environmental organisations (Hansen 2002).<br />

The <strong>Arctic</strong> tern (Sterna paradisaea) is a wide-spread breeder <strong>in</strong> Greenl<strong>and</strong><br />

with a patchy distribution. It is usually found <strong>breed<strong>in</strong>g</strong> on skerries, <strong>in</strong>lets<br />

<strong>and</strong> isl<strong>and</strong>s <strong>in</strong> colonies vary<strong>in</strong>g from few pairs to tens <strong>of</strong> thous<strong>and</strong>s pairs<br />

(Boertmann 2004). Harvest<strong>in</strong>g <strong>of</strong> tern eggs has probably taken place as<br />

long as humans have <strong>in</strong>habited the country, <strong>and</strong> is even today considered<br />

an important activity dur<strong>in</strong>g summer. Although historical censuses<br />

<strong>of</strong> Greenl<strong>and</strong> <strong>Arctic</strong> tern colonies are scarce, there is evidence that the<br />

population has suffered a decl<strong>in</strong>e s<strong>in</strong>ce mid 20 th century (Burnham et al.<br />

2005, Egevang et al. 2004, Salomonsen 1950). This decl<strong>in</strong>e has been associated<br />

with an <strong>in</strong>crease <strong>in</strong> egg harvest<strong>in</strong>g, as both human population size<br />

<strong>and</strong> mobility through better boats with larger eng<strong>in</strong>es, have <strong>in</strong>creased <strong>in</strong><br />

the same period (Hansen 2002). The concern for the Greenl<strong>and</strong> <strong>Arctic</strong> tern<br />

population led to a ban on <strong>Arctic</strong> tern egg harvest<strong>in</strong>g from 2002 <strong>and</strong> onwards.<br />

Before 2002, egg harvest<strong>in</strong>g was allowed with a clos<strong>in</strong>g date at July<br />

1 st .The new regulations have led to protests from local people who view<br />

this as an <strong>in</strong>fr<strong>in</strong>gement <strong>of</strong> their cultural heritage, <strong>and</strong> so there is pressure<br />

for the ban to be lifted. Conservationists are sympathetic to these pleas but<br />

ma<strong>in</strong>ta<strong>in</strong> that any future harvest<strong>in</strong>g should be conducted <strong>in</strong> a susta<strong>in</strong>able<br />

manner. The challenge for conservation biologists was to identify the suite<br />

<strong>of</strong> management prescriptions that will allow this.<br />

43


44<br />

There is little written documentation <strong>of</strong> the Greenl<strong>and</strong> <strong>Arctic</strong> tern harvest.<br />

Salomonsen (1950) estimated the annual number <strong>of</strong> eggs harvested to be<br />

as high as 100,000, while Frich (1997) estimated that 150-200 persons visited<br />

the archipelago between 6 <strong>and</strong> 25 June 2006, <strong>and</strong> harvested between<br />

3,000 <strong>and</strong> 6,000 eggs with a harvest<strong>in</strong>g rate <strong>of</strong> 20-30 eggs per day per person.<br />

The fi rst year after the ban on egg harvest<strong>in</strong>g, 42 persons were recorded<br />

<strong>in</strong> illegal egg harvest<strong>in</strong>g activities between 18 <strong>and</strong> 24 June 2002.<br />

On 27 June 2002 two families were caught with a total <strong>of</strong> 398 boiled <strong>Arctic</strong><br />

tern eggs – collected <strong>in</strong> less than 24 hours. S<strong>in</strong>ce 2002, the level <strong>of</strong> illegal<br />

harvest<strong>in</strong>g has decl<strong>in</strong>ed at Kitsissunnguit (pers. obs.).<br />

In this study we comb<strong>in</strong>e <strong>breed<strong>in</strong>g</strong> parameters on <strong>Arctic</strong> <strong>terns</strong> obta<strong>in</strong>ed<br />

from Greenl<strong>and</strong> <strong>in</strong> a model to predict whether a susta<strong>in</strong>able egg harvest<br />

can be practiced <strong>in</strong> Greenl<strong>and</strong>. The goal <strong>of</strong> this study is to see if a balance<br />

could be found between confl ict<strong>in</strong>g <strong>in</strong>terests <strong>of</strong> egg harvest by <strong>in</strong>digenous<br />

people <strong>and</strong> preserv<strong>in</strong>g wildlife as applied <strong>in</strong> similar studies, e.g. sooty<br />

<strong>terns</strong> (Sterna fuscata) <strong>and</strong> Glaucous-w<strong>in</strong>ged gulls (Larus glaucescens) (Feare<br />

1976; Feare 1976; Zador et al. 2006). The aim is to produce recommendations<br />

for managers on how enforceable regulations can secure that egg<br />

harvest<strong>in</strong>g is still possible for local Inuit with m<strong>in</strong>imum impact on the<br />

<strong>Arctic</strong> tern population.<br />

Methods <strong>and</strong> material<br />

Study site<br />

The study was conducted between 2002 <strong>and</strong> 2006 at Kitsissunnguit<br />

(Grønne Ejl<strong>and</strong>), the largest <strong>Arctic</strong> tern colony <strong>in</strong> Greenl<strong>and</strong>. The archipelago<br />

conta<strong>in</strong>s four major isl<strong>and</strong>s <strong>and</strong> a small number <strong>of</strong> skerries <strong>and</strong> islets,<br />

<strong>and</strong> is located <strong>in</strong> the southern part <strong>of</strong> Disko Bay, West Greenl<strong>and</strong> (68˚50’N,<br />

52˚00’W). <strong>Arctic</strong> <strong>terns</strong> breed at relatively low densities throughout the <strong>in</strong>terior<br />

parts <strong>of</strong> the isl<strong>and</strong>s on habitat compris<strong>in</strong>g dwarf scrub heath.<br />

Data collection<br />

Study plots were defi ned with the tern colony, <strong>and</strong> all nests laid with<strong>in</strong><br />

these through the season were located by <strong>in</strong>tensive search<strong>in</strong>g. The clutch<br />

size <strong>of</strong> each nest was recorded <strong>and</strong> the egg length, breadth <strong>and</strong> mass was<br />

recorded us<strong>in</strong>g Vernier callipers <strong>and</strong> electronic scale with 0.1 g accuracy.<br />

Lay<strong>in</strong>g date were determ<strong>in</strong>ed by backtrack<strong>in</strong>g hatch<strong>in</strong>g dates by 22 days<br />

(Cramp 1985, Hatch 2002). Nests were enclosed with<strong>in</strong> a 5-8 meter diameter,<br />

25 cm high fence <strong>of</strong> chicken wire, with shelter for the chick be<strong>in</strong>g<br />

provided <strong>in</strong> the form <strong>of</strong> piled rocks, peat or driftwood. Nests were then<br />

checked every 1-2 days to determ<strong>in</strong>e their fate. Once the chicks hatched<br />

they were fi tted with a metal r<strong>in</strong>g <strong>and</strong> had their w<strong>in</strong>g <strong>and</strong> weight measured<br />

on every visit. In the small number <strong>of</strong> <strong>in</strong>stances where chicks were<br />

miss<strong>in</strong>g from their enclosure, watches were stationed on vantage po<strong>in</strong>ts<br />

overlook<strong>in</strong>g the adult’s territory. Any chicks seen walk<strong>in</strong>g around nearby<br />

or be<strong>in</strong>g fed by adults were recaptured, <strong>and</strong> returned to the enclosure if<br />

their r<strong>in</strong>g number <strong>in</strong>dicated they belonged there.<br />

Renest<strong>in</strong>g<br />

Estimates <strong>of</strong> the replacement period <strong>in</strong> <strong>Arctic</strong> <strong>terns</strong> were obta<strong>in</strong>ed by experimentally<br />

remov<strong>in</strong>g clutches <strong>of</strong> 30 <strong>breed<strong>in</strong>g</strong> pairs with<strong>in</strong> a study plot


dur<strong>in</strong>g 2006. Before remov<strong>in</strong>g the eggs <strong>in</strong> the nest, one <strong>of</strong> the adult birds<br />

<strong>in</strong> the pair was caught <strong>and</strong> dyed with picric acid. After removal, picric<br />

marked birds <strong>in</strong> the study plot <strong>and</strong> surround<strong>in</strong>g area were observed from<br />

a bl<strong>in</strong>d each day. When these birds were observed <strong>in</strong>cubat<strong>in</strong>g their nests<br />

were located <strong>and</strong> treated as described above.<br />

Population size<br />

The high number <strong>of</strong> <strong>breed<strong>in</strong>g</strong> birds comb<strong>in</strong>ed with the fact that <strong>terns</strong> at<br />

Kitsissunnguit breed scattered at low densities over extensive areas meant<br />

that complete colony counts usually employed for tern censuses were not<br />

applicable. Instead, densities <strong>of</strong> <strong>Arctic</strong> tern nests were sampled along a<br />

l<strong>in</strong>e transect (Buckl<strong>and</strong> et al. 2001). North-south oriented l<strong>in</strong>es 250-m apart<br />

were used <strong>in</strong> the fi eld with data subsequent analysed us<strong>in</strong>g the s<strong>of</strong>tware<br />

Distance version 5.0 (Thomas et al. 2006). Transects were always conducted<br />

by two people: an observer <strong>and</strong> a navigator. The observer would walk<br />

along a transect l<strong>in</strong>e at an equal pace, search<strong>in</strong>g for nests <strong>and</strong> measur<strong>in</strong>g<br />

the distance between the nest <strong>and</strong> the transect l<strong>in</strong>e with a measur<strong>in</strong>g tape.<br />

The navigator would walk approximately 15 meters beh<strong>in</strong>d the observer<br />

<strong>and</strong> give directions to keep them on the track l<strong>in</strong>e. The l<strong>in</strong>e transect counts<br />

were conducted between 18 June <strong>and</strong> 3 July <strong>in</strong> 2002-2006 at a time <strong>in</strong> the<br />

<strong>breed<strong>in</strong>g</strong> cycle when the majority <strong>of</strong> the colony had stopped lay<strong>in</strong>g eggs<br />

but prior to the eggs hatch<strong>in</strong>g.<br />

Harvest effi ciency<br />

When egg harvest<strong>in</strong>g takes place at Kitsissunnguit, participants walk side<br />

by side search<strong>in</strong>g the ground for <strong>Arctic</strong> tern nests. When a nest is found,<br />

all eggs <strong>in</strong> the clutch are collected (own observations). The Inuit way <strong>of</strong><br />

search<strong>in</strong>g for eggs <strong>in</strong> the colony resembles the method used under l<strong>in</strong>e<br />

transect population estimation. As <strong>in</strong>put <strong>in</strong> the harvest model, an estimate<br />

<strong>of</strong> harvest effi ciency (eggs encountered per time unit) could be obta<strong>in</strong>ed<br />

from the l<strong>in</strong>e transect.<br />

Parameter estimation<br />

Nest survival <strong>and</strong> chick survival were estimated separately us<strong>in</strong>g the<br />

Stephens method described <strong>in</strong> Rotella et al. (2004), implemented <strong>in</strong> SAS.<br />

This uses a non-l<strong>in</strong>ear mixed model with a b<strong>in</strong>omial error distribution<br />

<strong>and</strong> logit l<strong>in</strong>k to estimate daily survival probability. We fi tted a number <strong>of</strong><br />

models conta<strong>in</strong><strong>in</strong>g pert<strong>in</strong>ent covariates <strong>and</strong> conducted model selection by<br />

compar<strong>in</strong>g AIC values. The most parsimonious model was that with the<br />

lowest AIC value, unless a compet<strong>in</strong>g model with fewer parameters differed<br />

from this by less than two AIC units. In the case <strong>of</strong> nest survival the<br />

covariates were calendar date <strong>and</strong> whether the nest was a fi rst or a relay<br />

clutch. In the case <strong>of</strong> chicks the covariates were calendar date, chick age,<br />

hatch order <strong>and</strong> whether the brood was from a fi rst attempt or a relay.<br />

The likelihood <strong>of</strong> a clutch conta<strong>in</strong><strong>in</strong>g two eggs was modelled us<strong>in</strong>g a generalised<br />

l<strong>in</strong>ear model with a logit l<strong>in</strong>k <strong>and</strong> b<strong>in</strong>omial error distribution,<br />

with two eggs clutches adopt<strong>in</strong>g a value <strong>of</strong> one <strong>and</strong> s<strong>in</strong>gle egg clutches<br />

a value <strong>of</strong> zero. The covariate fi tted to the model was whether the clutch<br />

was a fi rst or relay nest<strong>in</strong>g attempt. The rate <strong>of</strong> egg <strong>in</strong>viability (defi ned as<br />

the likelihood <strong>of</strong> an egg that fails to hatch at the end <strong>of</strong> the <strong>in</strong>cubation period<br />

ow<strong>in</strong>g to <strong>in</strong>fertility, early embryo death or exhaustion dur<strong>in</strong>g hatch<strong>in</strong>g)<br />

was estimated us<strong>in</strong>g a similar model, <strong>in</strong> which the response variable was<br />

45


46<br />

the number <strong>of</strong> <strong>in</strong>viable eggs <strong>in</strong> the clutch <strong>and</strong> the b<strong>in</strong>omial denom<strong>in</strong>ator<br />

was the total clutch size. Covariates fi tted to the model were calendar date<br />

<strong>and</strong> whether the eggs were <strong>in</strong> a fi rst or relay clutch. Model selection <strong>in</strong><br />

both cases was conducted us<strong>in</strong>g likelihood ratio tests. Both these models<br />

were implemented <strong>in</strong> SAS.<br />

Incubation <strong>and</strong> fl edg<strong>in</strong>g periods <strong>and</strong> their ranges were taken from the literature<br />

(Cramp 1985). SDs were estimated by generat<strong>in</strong>g r<strong>and</strong>om normal<br />

distributions from the published mean <strong>and</strong> iteratively varied SD values until<br />

the maximum <strong>and</strong> m<strong>in</strong>imum values matched the published range <strong>in</strong> values.<br />

The mean replacement period <strong>and</strong> its SD were estimated from the <strong>in</strong>tervals<br />

between clutch removal <strong>and</strong> relay<strong>in</strong>g <strong>in</strong> the experimental study plot.<br />

The start date (average date upon which <strong>in</strong>dividuals laid their fi rst clutch)<br />

<strong>and</strong> the stop date (the average date after which <strong>in</strong>dividuals would not<br />

<strong>in</strong>itiate further relay clutches) <strong>and</strong> their SD were estimated by iteratively<br />

vary<strong>in</strong>g these values <strong>in</strong> a simulation model <strong>of</strong> the lay<strong>in</strong>g season (see below<br />

for details). The result<strong>in</strong>g estimated frequency distribution <strong>of</strong> nest<br />

<strong>in</strong>itiation dates were compared with those observed <strong>in</strong> the experimental<br />

study plot. The values that m<strong>in</strong>imised the sum <strong>of</strong> the squared deviations<br />

between observed <strong>and</strong> expected values were those used <strong>in</strong> further simulation<br />

models (Green 1988, Ratcliffe et al. 2005).<br />

Simulation model<br />

A simulation models that allowed for re-nest<strong>in</strong>g (Be<strong>in</strong>tema <strong>and</strong> Müskens<br />

1987; Green 1988; Green et al. 1997; Ratcliffe et al. 2005) was used to estimate<br />

productivity <strong>and</strong> number <strong>of</strong> nest<strong>in</strong>g attempts made by <strong>Arctic</strong> <strong>terns</strong>,<br />

<strong>and</strong> the numbers <strong>of</strong> eggs that were harvested by humans, under a range<br />

<strong>of</strong> harvest management options. Options <strong>in</strong>volved variations <strong>in</strong> the date<br />

harvest<strong>in</strong>g started, the number <strong>of</strong> days the harvest rema<strong>in</strong>ed open <strong>and</strong><br />

the amount <strong>of</strong> harvest<strong>in</strong>g effort (spread equally over the open period) <strong>in</strong><br />

terms <strong>of</strong> man hours. We also only allowed one <strong>of</strong> the isl<strong>and</strong>s <strong>in</strong> the archipelago,<br />

Basisø, to be open to harvest<strong>in</strong>g, although the model has the fl exibility<br />

to <strong>in</strong>clude variation <strong>in</strong> the area open for harvest.<br />

Breed<strong>in</strong>g pairs were r<strong>and</strong>omly allocated to a management zone by generat<strong>in</strong>g<br />

a r<strong>and</strong>om probability: if this was less than the proportion <strong>of</strong> pairs occupy<strong>in</strong>g<br />

Basisø then the pair was at risk <strong>of</strong> harvest<strong>in</strong>g, otherwise they bred<br />

on another isl<strong>and</strong> where only natural mortality occurred. Breed<strong>in</strong>g pairs<br />

were also r<strong>and</strong>omly allocated <strong>in</strong>cubation, fl edg<strong>in</strong>g <strong>and</strong> replacement periods<br />

<strong>and</strong> a start <strong>and</strong> stop date, all <strong>of</strong> which were drawn r<strong>and</strong>omly from a<br />

normal distribution with the mean <strong>and</strong> st<strong>and</strong>ard deviation appropriate to<br />

each parameter. Clutch size was two unless a r<strong>and</strong>omly generated probability<br />

exceeded the estimated proportion <strong>of</strong> two egg clutches, <strong>in</strong> which<br />

case it was one. The lay<strong>in</strong>g period was calculated as the clutch size m<strong>in</strong>us<br />

1 day, on the basis <strong>of</strong> one egg be<strong>in</strong>g laid per day <strong>and</strong> <strong>in</strong>cubation started the<br />

day the last egg was laid.<br />

Dur<strong>in</strong>g each day <strong>of</strong> the lay<strong>in</strong>g <strong>and</strong> <strong>in</strong>cubation periods, the clutch was<br />

subjected to a likelihood <strong>of</strong> natural failure by test<strong>in</strong>g whether a r<strong>and</strong>om<br />

probability exceeded the date-specifi c daily nest survival rate until the <strong>in</strong>cubation<br />

period elapsed or the nest failed. On those days when harvest<strong>in</strong>g<br />

occurred, nests on Basisø were further subjected to a likelihood <strong>of</strong> be<strong>in</strong>g<br />

harvested <strong>in</strong> the same way. The daily likelihood <strong>of</strong> harvest-<strong>in</strong>duced failure<br />

was calculated by multiply<strong>in</strong>g the effort on that day by the probability <strong>of</strong>


a nest be<strong>in</strong>g encountered per man hour. A tally <strong>of</strong> the number <strong>of</strong> eggs harvested<br />

from the population dur<strong>in</strong>g the season was kept.<br />

Pairs that lost eggs dur<strong>in</strong>g the lay<strong>in</strong>g period were allowed to cont<strong>in</strong>ue to<br />

lay eggs until clutch completion. Those that failed dur<strong>in</strong>g <strong>in</strong>cubation were<br />

allowed to relay if the date <strong>of</strong> failure plus the replacement period was<br />

earlier than the stop date, otherwise they would give up <strong>breed<strong>in</strong>g</strong> for the<br />

season <strong>and</strong> simulations for that pair ceased. A tally <strong>of</strong> the number <strong>of</strong> nest<strong>in</strong>g<br />

attempts made by the population dur<strong>in</strong>g the season was kept.<br />

If the nest survived to the end <strong>of</strong> the <strong>in</strong>cubation period, a r<strong>and</strong>om likelihood<br />

was generated for each egg <strong>in</strong> the clutch: if this was lower than the<br />

likelihood <strong>of</strong> egg <strong>in</strong>viability the egg failed to hatch, otherwise it produced<br />

a chick. Each chick that hatched was subjected to an age- <strong>and</strong> hatch<strong>in</strong>g order-specifi<br />

c daily mortality rate until its fl edg<strong>in</strong>g period elapsed or it died.<br />

In the unlikely event <strong>of</strong> an A-chick dy<strong>in</strong>g before its sibl<strong>in</strong>g, the B-chick<br />

would thereafter be exposed to the lower mortality rates experienced by<br />

A-chicks. A tally <strong>of</strong> the number <strong>of</strong> chicks that fl edged from the population<br />

dur<strong>in</strong>g the season was kept.<br />

This procedure was repeated for each <strong>of</strong> 300 pairs <strong>in</strong> each season simulated.<br />

This number <strong>of</strong> pairs was suffi ciently large to avoid demographic<br />

stochasticity, but small enough to allow reasonably rapid process<strong>in</strong>g<br />

times. The number <strong>of</strong> chicks fl edged <strong>and</strong> the number <strong>of</strong> nest<strong>in</strong>g attempts<br />

were each divided by the number <strong>of</strong> pairs to estimate productivity <strong>and</strong><br />

nest<strong>in</strong>g attempts per pair. These values were estimated 999 times for each<br />

harvest management option, <strong>and</strong> the mean <strong>and</strong> SD (equivalent to SE) <strong>of</strong><br />

these bootstrapped replicates were calculated. Numbers <strong>of</strong> eggs harvested<br />

were treated similarly, but values were scaled up accord<strong>in</strong>g to the actual<br />

number <strong>of</strong> pairs <strong>in</strong> the harvested area before the average <strong>and</strong> SD were<br />

calculated. A bespoke program written <strong>in</strong> Micros<strong>of</strong>t Visual Basic 6·0 was<br />

used to perform the simulations.<br />

Population model<br />

In order to evaluate the potential impact <strong>of</strong> egg harvest<strong>in</strong>g on population<br />

growth rate, we constructed a simple matrix model <strong>in</strong> ULM (Legendre<br />

<strong>and</strong> Clobert 1995). Matrix models provide a simple <strong>and</strong> fl exible tool for<br />

explor<strong>in</strong>g how variation <strong>in</strong> demographic parameters affects population<br />

growth (Caswell 2001). Little demographic <strong>in</strong>formation is available for the<br />

<strong>Arctic</strong> tern, <strong>and</strong> the model parameters were therefore ma<strong>in</strong>ly based on<br />

best guesses. The model had 3 age classes; adult survival was set to 0.9<br />

(Devl<strong>in</strong> et al. 2008), age <strong>of</strong> recruitment to 3 years (Hatch 2002), <strong>and</strong> fi rst-<br />

second- <strong>and</strong> third-year survival to 0.5, 0.8 <strong>and</strong> 0.85 respectively.<br />

Parameter estimates are given ± 1 St<strong>and</strong>ard Error or with 95% confi dence<br />

<strong>in</strong>tervals when noted. Parameters <strong>of</strong> the nest survival <strong>and</strong> chick survival<br />

models are given on the logit scale.<br />

47


Figure 1. Daily survival rates <strong>in</strong><br />

relation to age <strong>and</strong> hatch order for<br />

a <strong>breed<strong>in</strong>g</strong> attempt <strong>in</strong>itiated at the<br />

average day <strong>of</strong> fi rst clutch <strong>in</strong>itiation<br />

(day 34). Age is expressed <strong>in</strong><br />

days to or from hatch<strong>in</strong>g (where<br />

day zero is the hatch<strong>in</strong>g date).<br />

The black l<strong>in</strong>e represents the survival<br />

rate <strong>of</strong> eggs <strong>and</strong> the A-chick,<br />

<strong>and</strong> the grey l<strong>in</strong>e the survival rate<br />

<strong>of</strong> the B-chick.<br />

48<br />

Results<br />

Model <strong>in</strong>put<br />

The average clutch size at Kitsissunnguit <strong>in</strong> 2002-2006 equalled 1.84<br />

(± 0.012, n = 1752) expressed as a 0.921 (95% CI 0.850-0.960) probability <strong>of</strong> a<br />

two egg clutch <strong>in</strong> fi rst nest<strong>in</strong>g attempt. Clutch size (1.6 eggs, ± 0.13, n = 16)<br />

<strong>in</strong> replacement nests was signifi cantly lower (χ2 = 16.8, p = 0.0002, df = 2)<br />

than non-manipulated nests (2.04 ± 0.026, n = 367) <strong>in</strong> 2006 <strong>and</strong> expressed<br />

as a probability <strong>of</strong> 0.654 (95 % CI 0.483-0.792) <strong>in</strong> the model. Daily nest survival<br />

(egg harvest excluded) varied over the course <strong>of</strong> the <strong>breed<strong>in</strong>g</strong> season,<br />

<strong>and</strong> daily chick survival varied with chick age (slope 0.067 ± 0.021,<br />

p = 0.0013) <strong>and</strong> with hatch<strong>in</strong>g order (Fig. 1). Egg <strong>in</strong>viablity probability was<br />

estimated to 0.035 (95 % CI 0.020-0.058).<br />

Daily survival rate<br />

1.02<br />

1.00<br />

0.98<br />

0.96<br />

0.94<br />

0.92<br />

0.90<br />

0.88<br />

The <strong>in</strong>cubation period was set to 22 days <strong>and</strong> the period from hatch<strong>in</strong>g to<br />

fl edg<strong>in</strong>g to 27 days (Cramp 1985, Hatch 2002) whereas the replacement<br />

period (period between a nest is harvested <strong>and</strong> a replacement nest produced)<br />

was set to 9.5 days (± 0.23, n=16).<br />

The population estimates for Kitsissunnguit based on transects varied between<br />

15,354 <strong>and</strong> 21,760 pairs (Egevang <strong>and</strong> Frederiksen 2010) with an<br />

average <strong>of</strong> 18,465 (± 1,023) pairs used <strong>in</strong> the simulation model. The l<strong>and</strong><br />

area (Basisø) exposed to harvest<strong>in</strong>g equals 38.0 % (3.21 vs. total <strong>of</strong> 8.43<br />

km 2 ) <strong>of</strong> the total l<strong>and</strong> area whereas 80.4 % (14,845 ± 1,136) <strong>of</strong> the total Kitsissunnguit<br />

population numbers (average 2002-2006) is found at Basisø.<br />

The l<strong>in</strong>e transect also produced estimates <strong>of</strong> nest encounter probability,<br />

which can be used as an expression <strong>of</strong> harvest effi ciency as search for nests<br />

<strong>in</strong> the two situations resemble each other. In 2004, 555 m<strong>in</strong>utes <strong>of</strong> effective<br />

search<strong>in</strong>g over 6,360 meters <strong>of</strong> l<strong>in</strong>e resulted <strong>in</strong> 415 found eggs orig<strong>in</strong>at<strong>in</strong>g<br />

from 234 nests. These results were used to calculate a probability that an<br />

<strong>in</strong>dividual nest was encountered person hour -1 : 234 [nests found] / (9.25<br />

[hours search time] × 18,465 [nests, total] ) = 0.001370<br />

Model output<br />

0.86<br />

–30 –25 –20 –15 –10 –5 0 5 10 15 20 25 30<br />

Nest age (days from hatch<strong>in</strong>g)<br />

Model output consisted <strong>of</strong> predicted harvest size (number <strong>of</strong> eggs harvested)<br />

<strong>and</strong> productivity (number <strong>of</strong> chicks fl edg<strong>in</strong>g per nest) under various<br />

harvest scenarios (Figs 2 <strong>and</strong> 3, A <strong>and</strong> B). An Harvest-Impact Ratio (HIR)<br />

is presented <strong>in</strong> Figure 2 C <strong>and</strong> Figure 3 C, <strong>and</strong> was calculated as:<br />

(HIR = Nh/(P0-Ph)),


Figure 2. A) Harvest (number <strong>of</strong><br />

eggs), B) productivity (fl edgl<strong>in</strong>gs<br />

produced per nest) <strong>and</strong> C) HIR<br />

(Harvest-Impact Ratio – see text)<br />

<strong>of</strong> simulated <strong>Arctic</strong> <strong>terns</strong> egg<br />

harvest plotted aga<strong>in</strong>st harvest<br />

start (days after May 1 st ) over the<br />

<strong>breed<strong>in</strong>g</strong> season with constant<br />

duration <strong>of</strong> harvest season (2<br />

days) <strong>and</strong> an effort <strong>of</strong> 25, 150,<br />

300 <strong>and</strong> 500 man hours.<br />

where Nh is the number <strong>of</strong> eggs harvested, P0 is productivity when no<br />

eggs are harvested (unaffected productivity value equals 0.9 chick per<br />

nest) <strong>and</strong> Ph is productivity under harvest.<br />

The variation <strong>of</strong> harvest<strong>in</strong>g <strong>and</strong> <strong>breed<strong>in</strong>g</strong> parameters is most marked <strong>in</strong><br />

relation to season (Fig. 2 <strong>and</strong> 3). Harvests <strong>in</strong>creased through the fi rst half<br />

<strong>of</strong> the season ow<strong>in</strong>g to the cumulative <strong>in</strong>crease <strong>in</strong> the proportion <strong>of</strong> birds<br />

that have laid eggs, but then decl<strong>in</strong>e later <strong>in</strong> the season ow<strong>in</strong>g to hatch<strong>in</strong>g.<br />

The impact <strong>of</strong> harvest<strong>in</strong>g on productivity <strong>in</strong>creases through time as losses<br />

are too late <strong>in</strong> the season to be replaced. This is evident from the relationship<br />

between tim<strong>in</strong>g <strong>of</strong> harvests <strong>and</strong> number <strong>of</strong> nest<strong>in</strong>g attempts per pair.<br />

Increas<strong>in</strong>g effort clearly results <strong>in</strong> greater harvests, <strong>and</strong> a l<strong>in</strong>ear <strong>in</strong>crease<br />

<strong>in</strong> impact when controll<strong>in</strong>g for season. Duration has relatively little effect,<br />

with only a subtle decrease <strong>in</strong> impact dur<strong>in</strong>g the middle <strong>of</strong> the season ow<strong>in</strong>g<br />

to eggs hav<strong>in</strong>g the opportunity to hatch before be<strong>in</strong>g harvested at a<br />

given level <strong>of</strong> effort.<br />

Eggs harvested<br />

Productivity<br />

HIR<br />

16000<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

0.95<br />

0.90<br />

0.85<br />

0.80<br />

0.75<br />

0.70<br />

0.65<br />

0.60<br />

A<br />

B<br />

C<br />

25<br />

150<br />

300<br />

500<br />

10 20 30 40 50 60 70 80<br />

Days after 1 May<br />

49


Figure 3. A) Harvest (number <strong>of</strong><br />

eggs), B) productivity (fl edgl<strong>in</strong>gs<br />

produced per nest) <strong>and</strong> C) HIR<br />

(Harvest-Impact Ratio – see text)<br />

<strong>of</strong> simulated <strong>Arctic</strong> <strong>terns</strong> egg<br />

harvest plotted aga<strong>in</strong>st harvest<br />

start (days after May 1 st ) over the<br />

<strong>breed<strong>in</strong>g</strong> season with constant<br />

effort (250 man hours) <strong>and</strong> a duration<br />

<strong>of</strong> harvest season <strong>of</strong> one,<br />

three, seven or ten days.<br />

50<br />

Eggs harvested<br />

Productivity<br />

HIR<br />

9000<br />

8000<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

0.95<br />

0.90<br />

0.85<br />

0.80<br />

0.75<br />

0.70<br />

0.65<br />

0.60<br />

A<br />

B<br />

C<br />

10 20 30 40 50 60 70 80<br />

Days after 1 May<br />

At constant effort (Fig. 3C) a peak <strong>in</strong> HIR occurred between 4 <strong>and</strong> 8 June defi<br />

n<strong>in</strong>g the day where harvest can be carried out with m<strong>in</strong>imum effect on the<br />

overall productivity relative to harvest size. Harvest was high dur<strong>in</strong>g this<br />

period (Fig. 3A), although the peak <strong>in</strong> harvest occurred a bit later (9-21 June).<br />

The model can help identify<strong>in</strong>g periods <strong>in</strong> the <strong>breed<strong>in</strong>g</strong> season when egg<br />

harvest<strong>in</strong>g is possible/optimal (harvesters will encounter a signifi cant<br />

number <strong>of</strong> egg dur<strong>in</strong>g a visit <strong>in</strong> the colony) but where the number <strong>of</strong> eggs<br />

removed will have a m<strong>in</strong>imum impact at population level. The model predicts<br />

that the highest number <strong>of</strong> eggs can be harvested at day 47 (from 1<br />

May = 16 June) whereas the greatest reduction <strong>in</strong> productivity (due to harvest<strong>in</strong>g)<br />

will appear at day 53 (22 June). The Harvest-Impact Ratio (HIR)<br />

predicts the highest value to occur at day 38 (7 June, i.e. the day with least<br />

impact on productivity relative to harvest size). Although this is n<strong>in</strong>e days<br />

away from the peak harvest<strong>in</strong>g date, harvest size on day 38 are on average<br />

92.2% (± 0.0048) <strong>of</strong> that on day 47.<br />

1<br />

3<br />

7<br />

10


At constant duration (Fig. 2) the overall pattern repeats. Highest values <strong>of</strong><br />

HIR (Fig. 2 C) are found around 4 to 8 June (day 35-39) although low effort<br />

(25 man hours) peaked somewhat later. Highest number <strong>of</strong> eggs harvested<br />

(Fig. 2A) also took place <strong>in</strong> the period around 9-21 June.<br />

With a <strong>breed<strong>in</strong>g</strong> success <strong>of</strong> 0.9 chicks per nest, the matrix model projected<br />

the population to grow at 4% per year. Reduc<strong>in</strong>g <strong>breed<strong>in</strong>g</strong> success to 0.6<br />

chicks per nest, similar to the impact <strong>of</strong> the most <strong>in</strong>tensive harvest scenario<br />

simulated (Fig. 2B), led to a 4% decl<strong>in</strong>e <strong>in</strong> growth rate so that the<br />

population was stable. Given the limited data available on <strong>Arctic</strong> tern demography,<br />

these values should be taken as <strong>in</strong>dicative. Vary<strong>in</strong>g the <strong>in</strong>put<br />

values for the model led to somewhat different projected growth rates, but<br />

for all realistic values a decl<strong>in</strong>e <strong>in</strong> <strong>breed<strong>in</strong>g</strong> success from 0.9 to 0.6 caused<br />

a 3-4% decl<strong>in</strong>e <strong>in</strong> population growth rate.<br />

Discussion<br />

The harvest model applied <strong>in</strong> the study provides an effective tool to evaluate<br />

the effects <strong>of</strong> egg harvest<strong>in</strong>g at Kitsissunnguit. Although a useful tool<br />

to design future management <strong>in</strong>itiatives, the predictions derived from the<br />

model must <strong>in</strong>terpreted with caution as these are only as robust as the data<br />

<strong>and</strong> parameter estimates upon they are based (review <strong>in</strong> Bass<strong>in</strong>ger 1998).<br />

As <strong>in</strong> other studies (Zador et al. 2006, Feare 1976) explor<strong>in</strong>g modell<strong>in</strong>g <strong>of</strong> a<br />

susta<strong>in</strong>able egg harvest, our ma<strong>in</strong> fi nd<strong>in</strong>gs suggest that harvest<strong>in</strong>g should<br />

be conducted as early <strong>in</strong> the season as possible allow<strong>in</strong>g the birds to relay<br />

<strong>and</strong> m<strong>in</strong>imize the impact at population level. The clutch size <strong>in</strong> replacement<br />

nests were lower, as found <strong>in</strong> several Larid species (Golet et al. 2004,<br />

Wood et al. 2009), <strong>and</strong> delayed fl edg<strong>in</strong>g dates signifi cantly. Despite this,<br />

<strong>Arctic</strong> <strong>terns</strong> at Kitsissunnguit were cable to compensate for the lost <strong>of</strong> the<br />

fi rst clutch early <strong>in</strong> the season by relay<strong>in</strong>g <strong>and</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a production<br />

<strong>of</strong> similar magnitude as non-harvested nests. Although, early <strong>breed<strong>in</strong>g</strong><br />

<strong>in</strong>dividuals <strong>in</strong> bird populations are reported to be more productive that<br />

late ones (Lack 1966, Perr<strong>in</strong>s 1970), studies has shown that late <strong>breed<strong>in</strong>g</strong> <strong>in</strong><br />

seabirds may be possible without a decl<strong>in</strong>e <strong>in</strong> productivity (de Forest <strong>and</strong><br />

Gaston 1996, Hipfner et al. 1999, Harris <strong>and</strong> Wanless 2004) or even benefi -<br />

cial <strong>in</strong> some cases (Brown <strong>and</strong> Morris 1996).<br />

The aim <strong>of</strong> this study was to produce management advice on how a susta<strong>in</strong>able<br />

egg harvest could be carried out <strong>in</strong> Greenl<strong>and</strong>. The overall goal is<br />

to ensure that egg harvesters will be rewarded when visit<strong>in</strong>g the colony,<br />

while the impact at population level is kept at a m<strong>in</strong>imum allow<strong>in</strong>g the<br />

birds to relay <strong>and</strong> produce a signifi cant number <strong>of</strong> fl edgl<strong>in</strong>gs. In practice,<br />

there are three management scenarios which could help <strong>in</strong>sure this:<br />

1) <strong>in</strong>troduction <strong>of</strong> a clos<strong>in</strong>g date – a fi xed date dur<strong>in</strong>g the <strong>breed<strong>in</strong>g</strong> season<br />

where harvest<strong>in</strong>g will stop, 2) a bag limit – a fi xed number <strong>of</strong> eggs allowed<br />

to be harvested over the season or 3) restrictions <strong>in</strong> effort – a fi xed amount<br />

<strong>of</strong> harvest<strong>in</strong>g man hours allowed dur<strong>in</strong>g the season.<br />

The harvest model predicts the largest potential harvest to take place six<br />

days earlier (22 June vs. 16 June) than the date where the highest impact<br />

was identifi ed, but the date with highest Harvest-Impact Ratio falls n<strong>in</strong>e<br />

days earlier (7 June) with the numbers <strong>of</strong> eggs available for harvesters <strong>in</strong><br />

the colony be<strong>in</strong>g almost (92%) as high as <strong>in</strong> the peak period. A simple pop-<br />

51


52<br />

ulation model furthermore predicts that high effort harvest<strong>in</strong>g can result<br />

<strong>in</strong> a 4% per annum decl<strong>in</strong>e <strong>in</strong> growth rate <strong>of</strong> the <strong>Arctic</strong> tern population.<br />

A clos<strong>in</strong>g date (scenario 1) <strong>in</strong> egg harvest<strong>in</strong>g around 7 June would ensure<br />

that locals visit<strong>in</strong>g the colony would collect high numbers <strong>of</strong> eggs. At the<br />

same time, the proportion <strong>of</strong> eggs removed from the population would<br />

only have a m<strong>in</strong>or impact, as most birds would be able to produce a replacement<br />

clutch. Moreover, early season harvests will be more palatable<br />

to people as the eggs have not yet developed, although some older Inuit<br />

prefer the ripe taste <strong>of</strong> eggs conta<strong>in</strong><strong>in</strong>g partially developed embryos.<br />

The model helps to predict a theoretical optimal clos<strong>in</strong>g date by compar<strong>in</strong>g<br />

potential harvest versus productivity, but the actual impact on productivity<br />

would obviously depend on harvest effort. Although the overall<br />

goal <strong>of</strong> susta<strong>in</strong>ability <strong>in</strong> egg harvest also could be reached by management<br />

scenario 2 or 3, the logistic challenges <strong>of</strong> enforc<strong>in</strong>g bag numbers or man<br />

hours spent egg harvest<strong>in</strong>g seems an overwhelm<strong>in</strong>g task <strong>in</strong> rural Greenl<strong>and</strong>.<br />

The risk <strong>of</strong> under- or non-report<strong>in</strong>g <strong>of</strong> the number <strong>of</strong> eggs harvested<br />

is high, <strong>and</strong> can result <strong>in</strong> <strong>in</strong>verse density dependence <strong>in</strong> a decl<strong>in</strong><strong>in</strong>g<br />

population ow<strong>in</strong>g to a fi xed harvest represent<strong>in</strong>g an <strong>in</strong>creased proportion<br />

impact. Monitor<strong>in</strong>g accumulated egg numbers harvested <strong>in</strong> the current<br />

<strong>breed<strong>in</strong>g</strong> season would furthermore <strong>in</strong>troduce a high level <strong>of</strong> bureaucracy<br />

<strong>in</strong>to the management system.<br />

Another option would be to regulate effort by open<strong>in</strong>g up for harvest<strong>in</strong>g<br />

on a s<strong>in</strong>gle day (a “harvest day”) <strong>and</strong> otherwise keep the colony closed for<br />

the public. Under the supervision <strong>of</strong> the hunt<strong>in</strong>g <strong>of</strong>fi cer or another local<br />

designated authority harvest could be allowed to take place at Basisø. This<br />

would represent an enforceable scenario with well-defi ned dates where<br />

access to the isl<strong>and</strong> was allowed <strong>and</strong> no public access otherwise. More importantly,<br />

an effort restricted scenario is positively density dependent, so<br />

if the population density decl<strong>in</strong>es so does the harvest. Long-term changes<br />

<strong>in</strong> the population size or years with low <strong>breed<strong>in</strong>g</strong> numbers will thus result<br />

<strong>in</strong> a low proportion <strong>of</strong> harvested eggs <strong>and</strong> limited negative impact at<br />

population level.<br />

A disadvantage <strong>of</strong> the <strong>in</strong>troduction <strong>of</strong> a clos<strong>in</strong>g date is that the <strong>breed<strong>in</strong>g</strong><br />

phenology <strong>of</strong> <strong>Arctic</strong> <strong>terns</strong> <strong>breed<strong>in</strong>g</strong> <strong>in</strong> <strong>Arctic</strong> regions may vary considerably<br />

between years, potentially correlated with sea ice break-up (Hatch<br />

2002). At Kitsissunnguit the majority <strong>of</strong> the eggs hatch <strong>in</strong> the fi rst week <strong>of</strong><br />

July (<strong>in</strong>dicat<strong>in</strong>g that egg lay<strong>in</strong>g took place <strong>in</strong> mid-June), but <strong>in</strong> some years<br />

early <strong>breed<strong>in</strong>g</strong> takes place – as the case <strong>in</strong> 2004 where eggs hatched three<br />

weeks earlier <strong>in</strong> mid June. This means that <strong>in</strong> some years a fi xed clos<strong>in</strong>g<br />

date will be “<strong>of</strong>f synch” with egg lay<strong>in</strong>g, result<strong>in</strong>g <strong>in</strong> years with either a<br />

higher impact on <strong>breed<strong>in</strong>g</strong> productivity than predicted (“early” years) or<br />

<strong>in</strong> “late years” with reduced or absent egg harvest before the clos<strong>in</strong>g date.<br />

Ideally, the stage (lay<strong>in</strong>g date) <strong>of</strong> the <strong>breed<strong>in</strong>g</strong> cycle should be addressed<br />

early <strong>in</strong> a current year before a clos<strong>in</strong>g date or a harvest<strong>in</strong>g period is determ<strong>in</strong>ed.<br />

However, the amount <strong>of</strong> time acquired to obta<strong>in</strong> on-site estimates<br />

<strong>of</strong> lay<strong>in</strong>g date, validate data <strong>and</strong> communicate an clos<strong>in</strong>g date/harvest<br />

date to the scatted settlements <strong>in</strong> the Disko Bay, mean that this would not<br />

be realistic with<strong>in</strong> the time frame available.<br />

In conclusion, based on the fi nd<strong>in</strong>gs <strong>in</strong> this study future management <strong>of</strong><br />

the <strong>Arctic</strong> tern population at Kitsissunnguit could <strong>in</strong>clude a limited egg<br />

harvest. This should be restricted to only one isl<strong>and</strong> <strong>in</strong> the archipelago


(Basisø) <strong>and</strong> <strong>in</strong>clude either a) a clos<strong>in</strong>g date between 7-10 June or b) <strong>in</strong>troduction<br />

<strong>of</strong> a harvest day <strong>in</strong> the same period. It is however important that<br />

an open<strong>in</strong>g <strong>of</strong> egg harvest at Kitsissunnguit is followed by a monitor<strong>in</strong>g<br />

programme to assess the impact <strong>of</strong> the harvest to allow fi ne tun<strong>in</strong>g <strong>of</strong> the<br />

harvest model. We recommend monitor<strong>in</strong>g productivity <strong>and</strong> population<br />

size <strong>of</strong> birds <strong>in</strong> closed <strong>and</strong> open areas <strong>of</strong> the archipelago so that the model<br />

<strong>in</strong>put parameters can be adjusted. It would furthermore be especially<br />

valuable to study fl edg<strong>in</strong>g success <strong>of</strong> replacement clutches <strong>in</strong> situations<br />

where a large proportion <strong>of</strong> the colony relays.<br />

The output <strong>of</strong> the harvest model can furthermore be used to address the<br />

cause <strong>of</strong> the observed historical decl<strong>in</strong>e <strong>in</strong> <strong>Arctic</strong> tern population size. The<br />

fi nd<strong>in</strong>g <strong>of</strong> an optimal harvest period <strong>in</strong> early June <strong>and</strong> a severe impact<br />

on productivity predicted dur<strong>in</strong>g late June puts the pre-2002 clos<strong>in</strong>g date<br />

<strong>of</strong> 1 July <strong>in</strong>to perspective. Comb<strong>in</strong><strong>in</strong>g this with the outcome <strong>of</strong> the simple<br />

population model with high effort harvest <strong>of</strong> a 4 % decl<strong>in</strong>e <strong>in</strong> annual<br />

growth rate (equals a 62.5 % decl<strong>in</strong>e over 25 years if the population would<br />

otherwise be stable), it seems plausible that a high effort historical harvest<br />

conducted late <strong>in</strong> the <strong>breed<strong>in</strong>g</strong> season could have accounted for the observed<br />

decl<strong>in</strong>e <strong>in</strong> the Greenl<strong>and</strong> <strong>Arctic</strong> tern.<br />

Acknowledgements<br />

The fi eldwork was fi nancially supported by the Danish Energy Agency (the<br />

climate support program to the <strong>Arctic</strong>) <strong>and</strong> the Commission for Scientifi c<br />

Research <strong>in</strong> Greenl<strong>and</strong> (KVUG). Special thanks go to the people who assisted<br />

<strong>in</strong> the fi eld over the years: David Boertmann (National Environmental<br />

Research Institute, Denmark), Anders Tøttrup, Mikkel Willemoes <strong>and</strong> Peter<br />

S. Jørgensen (University <strong>of</strong> Copenhagen), Ole S. Kristensen, Lars Witt<strong>in</strong>g<br />

<strong>and</strong> Rasmus Lauridsen (GNIR), Bjarne Petersen, Qasigiannguit <strong>and</strong> Stuart<br />

Benn (Royal Society for Protection <strong>of</strong> Birds). Also thanks to F<strong>in</strong>n Steffens<br />

(Qeqertarsuaq) <strong>and</strong> Elektriker-it (Aasiaat) for logistic support.<br />

Literature<br />

Barrett, R.T. 1989. The effect <strong>of</strong> egg harvest<strong>in</strong>g on the growth <strong>of</strong> chicks <strong>and</strong> <strong>breed<strong>in</strong>g</strong><br />

success <strong>of</strong> the Shag Phalacrocorax aristotelis <strong>and</strong> the Kittiwake Rissa tridactyla on<br />

Bleiksøy, North Norway. Ornis Fennica 66: 117-122.<br />

Bass<strong>in</strong>ger, S.R. 1998. On the use <strong>of</strong> demographic models <strong>of</strong> population viability <strong>in</strong> endangered<br />

species management. Journal <strong>of</strong> Wildlife Management 62: 821-841.<br />

Be<strong>in</strong>tema, A.J. <strong>and</strong> G.J.D.M. Müskens 1987. Nest<strong>in</strong>g success <strong>of</strong> birds <strong>breed<strong>in</strong>g</strong> <strong>in</strong><br />

Dutch agricultural grassl<strong>and</strong>s. Journal <strong>of</strong> Applied Ecology, 24, 743–758.<br />

Boertmann, D. 1994. A annotated checklist to the birds <strong>of</strong> Greenl<strong>and</strong>. Meddelelser om<br />

Grønl<strong>and</strong>, Bioscience 38: 1-63.<br />

Brown, K.M. <strong>and</strong> R.D. Morris 1996. From Tragedy to Triumph: Renest<strong>in</strong>g <strong>in</strong> R<strong>in</strong>g-<br />

Billed Gulls. The Auk 113(1): 23-31.<br />

Buckl<strong>and</strong>, S.T., D.R. Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers <strong>and</strong> L. Thomas<br />

2001. Introduction to Distance Sampl<strong>in</strong>g – Estimat<strong>in</strong>g abundance <strong>of</strong> biological<br />

populations. Oxford, Oxford University Press.<br />

53


54<br />

Burnham, W., K.K. Burnham <strong>and</strong> T.J. Cade (2005). Past <strong>and</strong> present assessments <strong>of</strong><br />

bird life <strong>in</strong> Uummannaq District, West Greenl<strong>and</strong>. Dansk Ornitologisk Foren<strong>in</strong>gs<br />

Tidsskrift 99: 196-208.<br />

Caswell, H. 2001. Matrix population models. Construction, analysis <strong>and</strong> <strong>in</strong>terpretation.<br />

– S<strong>in</strong>auer.<br />

Coulson, J.C. 2002. Colonial Breed<strong>in</strong>g <strong>in</strong> Seabirds p. 87-114. In: Schreiber, E.A. <strong>and</strong><br />

Burger, J. (Eds.) Biology <strong>of</strong> Mar<strong>in</strong>e Birds 2002, CRC Mar<strong>in</strong>e Biology Series.<br />

Cramp, S., Ed. 1985. Terns to woodpeckers. Birds <strong>of</strong> the Western Palearctic. Oxford,<br />

Oxford University Press.<br />

Croxall, J.P., P.G.H. Evans <strong>and</strong> R.W. Schreiber 1984. Status <strong>and</strong> Conservation <strong>of</strong> the<br />

World’s seabirds. International Council <strong>of</strong> Bird Preservation. Technical Publication<br />

no. 2.<br />

Devl<strong>in</strong>, C.M., A.W. Diamond, S.W. Kress, C.S. Hall <strong>and</strong> L. Welch 2008. Breed<strong>in</strong>g<br />

Dispersal <strong>and</strong> Survival <strong>of</strong> <strong>Arctic</strong> Terns (Sterna paradisaea) Nest<strong>in</strong>g <strong>in</strong> the Gulf <strong>of</strong><br />

Ma<strong>in</strong>e. The Auk 125, 850-858.<br />

Egevang, C. <strong>and</strong> M. Frederiksen. 2010. Fluctuat<strong>in</strong>g <strong>breed<strong>in</strong>g</strong> <strong>of</strong> <strong>Arctic</strong> Terns (Sterna<br />

paradisaea) <strong>in</strong> <strong>Arctic</strong> <strong>and</strong> High-arctic colonies <strong>in</strong> Greenl<strong>and</strong>. Manuscript submitted<br />

WATERBIRDS.<br />

Egevang, C., K. Kampp <strong>and</strong> D. Boertmann 2004. The Breed<strong>in</strong>g Association <strong>of</strong> Red<br />

Phalaropes (Phalaropus fulicarius) with <strong>Arctic</strong> Terns (Sterna paradisaea): Response to<br />

a Redistribution <strong>of</strong> Terns <strong>in</strong> a Major Greenl<strong>and</strong> Colony. Waterbirds 27(4): 406-410.<br />

Feare, C.J. 1976. The <strong>breed<strong>in</strong>g</strong> <strong>of</strong> the Sooty Tern <strong>in</strong> the Seychelles <strong>and</strong> the effect <strong>of</strong> experimental<br />

removal <strong>of</strong> its eggs. J. Zool., (Lond.) 179: 317-360.<br />

Feare, C.J. 1976. The exploitation <strong>of</strong> sooty tern eggs <strong>in</strong> the Seychelles. Biological Conservation(10):<br />

169-182.<br />

de Forest, L.N. <strong>and</strong> A.J. Gaston 1996. The effect <strong>of</strong> age on tim<strong>in</strong>g <strong>of</strong> <strong>breed<strong>in</strong>g</strong> <strong>and</strong> reproductive<br />

success <strong>in</strong> thick-billed murre. Ecology 77: 1501-1511.<br />

Frich, A.S. 1997. Fuglelivet og dets udnyttelse på Grønne Ejl<strong>and</strong> i Vestgrønl<strong>and</strong> [Birds<br />

<strong>and</strong> exploitation <strong>of</strong> birds on Grønne Ejl<strong>and</strong> (Kitsissunnguit)]. Greenl<strong>and</strong> Institute<br />

<strong>of</strong> Natural Resources, Nuuk, Greenl<strong>and</strong>. Technical report no. 19.<br />

Furness, R.W. <strong>and</strong> Monaghan, P. 1987. Regulation <strong>of</strong> seabird populations. Seabird<br />

Ecology, pp. 35-52. Blackie, Glasgow.<br />

Golet, G.H., J.A. Schmutz, D.B. Irons <strong>and</strong> J.A. Estes 2004. Determ<strong>in</strong>ants <strong>of</strong> reproductive<br />

costs <strong>in</strong> the long-lived black-legged kittiwake: A multiyear experiment. 74: 353-372.<br />

Green, R.E. 1988. The effects <strong>of</strong> environmental factors on the tim<strong>in</strong>g <strong>and</strong> success <strong>of</strong> <strong>breed<strong>in</strong>g</strong><br />

<strong>of</strong> common snipe (Aves: Scolopacidae). Journal <strong>of</strong> Applied Ecology, 25, 79-93.<br />

Green, R.E., Tyler, G.A., Stowe, T.J. <strong>and</strong> Newton, A.V. 1997 A simulation model <strong>of</strong> the<br />

effect <strong>of</strong> mow<strong>in</strong>g <strong>of</strong> agricultural grassl<strong>and</strong> on <strong>breed<strong>in</strong>g</strong> success <strong>of</strong> the corncrake<br />

(Crex crex). Journal <strong>of</strong> Zoology, London, 243, 81–115.<br />

Hansen, K. 2002. A Farewell to Greenl<strong>and</strong>’s Wildlife, Nowlan, Denmark.<br />

Hipfner, J.M. 1997. The effect <strong>of</strong> parental quality <strong>and</strong> tim<strong>in</strong>g <strong>of</strong> <strong>breed<strong>in</strong>g</strong> on the<br />

growth <strong>of</strong> nestl<strong>in</strong>g Thick-billed Murres. Condor 99: 353-360.<br />

Lack, D. 1966. Population studies <strong>in</strong> Birds. Oxford University Press, Oxford.<br />

Legendre, S. <strong>and</strong> Clobert, J. 1995. ULM, a s<strong>of</strong>tware for conservation <strong>and</strong> evolutionary<br />

biologists. Journal <strong>of</strong> Applied Statistics 22: 817-834.<br />

Merkel, F. <strong>and</strong> Barry, T. (eds.) 2008. Seabird harvest <strong>in</strong> the <strong>Arctic</strong>. CAFF International<br />

Secretariat, Circumpolar Seabird Group (CBird), CAFF Technical Report No. 16.<br />

Moller, H. 2006. Are current harvest <strong>of</strong> seabirds susta<strong>in</strong>able? Acta Zoologica S<strong>in</strong>ica 52:<br />

649-652.


Nettleship, D. N., J. Burger <strong>and</strong> M. Gochfeld 1994. Seabirds on Isl<strong>and</strong>s: Threats, Case<br />

Studies <strong>and</strong> Action Plans. Birdlife Conservation Series no. 1.<br />

Perr<strong>in</strong>s, C. M. 1970. The tim<strong>in</strong>g <strong>of</strong> bird’s <strong>breed<strong>in</strong>g</strong> seasons. Ibis 112: 245-255.<br />

Ratcliffe, N., S.A. Schmitt <strong>and</strong> M. Whiffi n 2005. S<strong>in</strong>k or swim? Viability <strong>of</strong> a black-tailed<br />

godwit population <strong>in</strong> relation to fl ood<strong>in</strong>g. Journal <strong>of</strong> Applied Ecology 82: 834-843.<br />

Rotella, J.J., D<strong>in</strong>smore, S.J., Shaffer, T.L., 2004. Model<strong>in</strong>g nest-survival data, a comparison<br />

<strong>of</strong> recently developed methods that can be implemented <strong>in</strong> MARK <strong>and</strong> SAS.<br />

Anim. Biodiv. <strong>and</strong> Cons. 27: 187–204.<br />

Salomonsen, F. 1950. Grønl<strong>and</strong>s Fugle. The Birds <strong>of</strong> Greenl<strong>and</strong>. Copenhagen,<br />

Munksgaard.<br />

Thomas, L., J.L. Laake, S. Str<strong>in</strong>dberg, F.F.C. Marques, S.T. Buckl<strong>and</strong>, D.L. Borchers,<br />

D.R. Anderson, K.P. Burnham, S.L. Hedley <strong>and</strong> J.H. Pollard 2006. Distance. University<br />

<strong>of</strong> St. Andrews, UK. Waterbirds. Vol. 22 (1): 68-79.<br />

Wood, P.J., M.D. Hudson <strong>and</strong> C.P. Doncaster 2009. Impact <strong>of</strong> egg harvest<strong>in</strong>g on <strong>breed<strong>in</strong>g</strong><br />

success <strong>of</strong> black-headed gulls, Larus ridibundus. Acta Oecologica-International<br />

Journal <strong>of</strong> Ecology 35(1): 83-93.<br />

Zador, S.G., J. . Piatt <strong>and</strong> A.E. Punt 2006. Balanc<strong>in</strong>g predation <strong>and</strong> egg harvest <strong>in</strong> a colonial<br />

seabird: A simulation model. Ecological Modell<strong>in</strong>g 195(3-4): 318-326.<br />

55


Manus III<br />

FOOD-RELATED CONSEQUENCES OF<br />

RELAYING IN THE ARCTIC TERN:<br />

CONTRASTING PREY AVAILABILITY WITHIN<br />

A PROLONGED BREEDING SEASON<br />

Carsten Egevang 1 , Mikkel Willemoes Kristensen 2 ,<br />

Norman Ratcliff e 3 <strong>and</strong> Morten Frederiksen 4<br />

1 Greenl<strong>and</strong> Institute <strong>of</strong> Natural Resources<br />

Postbox 570, DK-3900 Nuuk, Greenl<strong>and</strong><br />

E-mail: egevang@natur.gl<br />

2 Department <strong>of</strong> Population Ecology<br />

Institute <strong>of</strong> Biology, University <strong>of</strong> Copenhagen,<br />

Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark<br />

3 British Antarctic Survey, High Cross<br />

Cambridge, CB3 0ET, United K<strong>in</strong>gdom<br />

4 National Environmental Research Institute<br />

Department <strong>of</strong> <strong>Arctic</strong> Environment, Aarhus University<br />

Frederiksborgvej 399, DK-4000 Roskilde, Denmark<br />

Manuscript submitted IBIS


Page 1 <strong>of</strong> 26 Ibis Submitted Manuscript<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

58<br />

Food-related consequences <strong>of</strong> relay<strong>in</strong>g <strong>in</strong> the <strong>Arctic</strong> Tern:<br />

Contrast<strong>in</strong>g prey availability with<strong>in</strong> a prolonged <strong>breed<strong>in</strong>g</strong> season<br />

Carsten Egevang 1 , Mikkel Willemoes Kristensen 2 , Norman Ratcliffe 3 <strong>and</strong> Morten<br />

Frederiksen 4<br />

IBIS Review Copy<br />

Key words: <strong>Arctic</strong> Tern, Sterna paradisaea, seabird, replacement clutch, <strong>Arctic</strong>, diet,<br />

Greenl<strong>and</strong>, Capel<strong>in</strong>, Mallotus villosus, egg harvest<strong>in</strong>g, <strong>in</strong>traspecific kleptoparasitism.<br />

1 Greenl<strong>and</strong> Institute <strong>of</strong> Natural Resources, Postbox 570, DK-3900 Nuuk, Greenl<strong>and</strong>, E-mail:<br />

egevang@natur.gl<br />

2<br />

Department <strong>of</strong> Population Ecology, Institute <strong>of</strong> Biology, University <strong>of</strong> Copenhagen,<br />

Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark<br />

3 British Antarctic Survey, High Cross, Cambridge, CB3 0ET, United K<strong>in</strong>gdom<br />

4 National Environmental Research Institute, Department <strong>of</strong> <strong>Arctic</strong> Environment, Aarhus<br />

University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark


Abstract<br />

Egg harvest<strong>in</strong>g may affect seabird population dynamics at several levels. The rate <strong>of</strong><br />

renest<strong>in</strong>g is one <strong>of</strong> the most important s<strong>in</strong>gle factors <strong>in</strong>fluenc<strong>in</strong>g annual reproductive<br />

success <strong>in</strong> harvested populations. However, those birds that do renest may face<br />

IBIS Review Copy<br />

additional costs s<strong>in</strong>ce late season decl<strong>in</strong>es <strong>in</strong> prey availability may result <strong>in</strong> elevated<br />

chick mortality ow<strong>in</strong>g to starvation compared to birds hatch<strong>in</strong>g their first clutch. Such<br />

costs are likely to be most pronounced at higher latitudes where w<strong>in</strong>dows <strong>of</strong> opportunity<br />

for successful <strong>breed<strong>in</strong>g</strong> are at their narrowest.<br />

We experimentally removed entire clutches from 30 <strong>Arctic</strong> Tern nests. Subsequently we<br />

monitored chick diet, provision<strong>in</strong>g rate, growth <strong>and</strong> survival <strong>in</strong> both the replacement<br />

nests <strong>and</strong> a control group.<br />

Ibis Submitted Manuscript<br />

The experimental egg removal resulted <strong>in</strong> 16 replacement nests (53.3 %) located at an<br />

average distance <strong>of</strong> 23.4 m (+ 7.65) from the orig<strong>in</strong>al nest site. The replacement<br />

clutches were four weeks (+ 3 days) delayed <strong>in</strong> the <strong>breed<strong>in</strong>g</strong> cycle compared to non-<br />

manipulated <strong>breed<strong>in</strong>g</strong> pairs <strong>and</strong> clutch size <strong>in</strong> replacement nests (1.6 eggs, + 0.13, n =<br />

16) was significantly lower than <strong>in</strong> the control group (2.1 eggs, ± 0.08, n = 46).<br />

This late <strong>breed<strong>in</strong>g</strong> season for replacement clutches resulted <strong>in</strong> a different forag<strong>in</strong>g<br />

situation compared to controls. Feed<strong>in</strong>g <strong>in</strong> control nests was characterised by long<br />

feed<strong>in</strong>g trips <strong>and</strong> a low feed<strong>in</strong>g rate, large Capel<strong>in</strong> as the pr<strong>in</strong>cipal prey item <strong>and</strong> a high<br />

<strong>in</strong>cidence <strong>of</strong> kleptoparasitism. Feed<strong>in</strong>g <strong>of</strong> chicks from replacement nests was<br />

characterised by short feed<strong>in</strong>g trips/high feed<strong>in</strong>g rate, fish larvae as pr<strong>in</strong>cipal prey <strong>and</strong><br />

Page 2 <strong>of</strong> 26<br />

59


Page 3 <strong>of</strong> 26 Ibis Submitted Manuscript<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

60<br />

an absence <strong>of</strong> kleptoparasitism. In both groups, Capel<strong>in</strong> was the s<strong>in</strong>gle most important<br />

prey species.<br />

Despite the altered food availability, the energetic provision<strong>in</strong>g rate, chick growth <strong>and</strong><br />

chick survival did not differ between the two groups. The parent birds <strong>in</strong> replacement<br />

nests switched to low quality prey items <strong>and</strong> compensated for this by significantly<br />

<strong>in</strong>creas<strong>in</strong>g feed<strong>in</strong>g rate.<br />

IBIS Review Copy<br />

Introduction<br />

The ability to produce a replacement clutch may be an important adaptation to <strong>in</strong>crease<br />

an <strong>in</strong>dividual’s annual reproductive success. This is particularly the case <strong>in</strong> avian<br />

species that are prone to the loss <strong>of</strong> <strong>of</strong>fspr<strong>in</strong>g due to stochastic events such as flood<strong>in</strong>g<br />

or to a high risk <strong>of</strong> nest predation (Brown <strong>and</strong> Morris 1996; Wendeln et al. 2000).<br />

However, the production <strong>of</strong> an additional clutch <strong>of</strong> eggs requires a costly <strong>in</strong>vestment <strong>in</strong><br />

terms <strong>of</strong> energy, <strong>and</strong> only females <strong>of</strong> “high quality” (older, experienced with high<br />

fitness) <strong>in</strong> a population may be able to allocate the needed energy <strong>in</strong>to a replacement<br />

clutch (Hegyi <strong>and</strong> Sasvari 1998; Hipfner et al. 1999). Furthermore, the delay <strong>in</strong> the<br />

<strong>breed<strong>in</strong>g</strong> cycle may result <strong>in</strong> altered, sub-optimal conditions for chick rear<strong>in</strong>g compared<br />

with chick rear<strong>in</strong>g earlier <strong>in</strong> the season ow<strong>in</strong>g to deteriorat<strong>in</strong>g food availability (Hipfner<br />

2001; Perr<strong>in</strong>s 1970).<br />

In Greenl<strong>and</strong> the <strong>Arctic</strong> Tern (Sterna paradisaea) has a widespread, patchy distribution<br />

with the largest colonies found <strong>in</strong> central West Greenl<strong>and</strong> (Boertmann 1994). The<br />

<strong>Arctic</strong> Tern <strong>in</strong> Greenl<strong>and</strong> has traditionally been subject to <strong>in</strong>tensive exploitation by local


Inuit <strong>in</strong> terms <strong>of</strong> egg harvest<strong>in</strong>g (Salomonsen 1950), which most likely has caused a<br />

general decl<strong>in</strong>e <strong>in</strong> the population over the last decades (Boertmann et al. 1996; Egevang<br />

et al. 2004). Although egg harvest<strong>in</strong>g has never been economically important <strong>in</strong><br />

Greenl<strong>and</strong>, the harvest<strong>in</strong>g <strong>of</strong> tern eggs has always been a popular recreational activity,<br />

<strong>of</strong>ten carried out by several generations <strong>in</strong> family groups. Egg harvest<strong>in</strong>g would usually<br />

take place dur<strong>in</strong>g early <strong>in</strong>cubation, but especially the older Inuit generation favour the<br />

IBIS Review Copy<br />

ripe taste <strong>of</strong> tern eggs <strong>in</strong> late development state, <strong>and</strong> harvest<strong>in</strong>g could cont<strong>in</strong>ue until late<br />

<strong>in</strong>cubation. <strong>Arctic</strong> Tern egg harvest<strong>in</strong>g was prohibited <strong>in</strong> 2002 <strong>in</strong> Greenl<strong>and</strong> <strong>and</strong> now<br />

only occurs illegally at far lower levels (Egevang et al. 2004). Although <strong>Arctic</strong> Terns<br />

may produce a replacement clutch to compensate for the harvested eggs, it is unlikely<br />

that all affected <strong>in</strong>dividuals will <strong>in</strong>vest <strong>in</strong> a second clutch that season. The likelihood <strong>of</strong><br />

relay<strong>in</strong>g may also be related to the stage <strong>of</strong> the <strong>in</strong>cubat<strong>in</strong>g period <strong>of</strong> which egg loss<br />

occurs, as found by Feare (1976) <strong>in</strong> Sooty Terns (Onychoprion fuscatus). Furthermore,<br />

egg harvest<strong>in</strong>g may create a mismatch between food dem<strong>and</strong> <strong>and</strong> food availability due<br />

to the delay <strong>in</strong> <strong>breed<strong>in</strong>g</strong> season.<br />

Ibis Submitted Manuscript<br />

Surface-feed<strong>in</strong>g seabirds are only capable <strong>of</strong> feed<strong>in</strong>g <strong>in</strong> a 2-dimensional space whereas<br />

div<strong>in</strong>g species exploit a 3-dimensional feed<strong>in</strong>g area. The general perception is that this<br />

makes surface feeders particularly prone to <strong>breed<strong>in</strong>g</strong> failure dur<strong>in</strong>g years <strong>of</strong> poor food<br />

availability, a dependency that is particularly pronounced when birds rely on few or a<br />

s<strong>in</strong>gle prey species (Regehr <strong>and</strong> Rodway 1999, Furness <strong>and</strong> Tasker 2000).<br />

Reproductive success <strong>of</strong> <strong>Arctic</strong> Terns is known to vary greatly with the food<br />

availability, which has been documented on several occasions <strong>in</strong> the Boreal zone where<br />

Lesser S<strong>and</strong>eel (Ammodytes mar<strong>in</strong>us) is the key food species (Monaghan et al. 1989;<br />

Monaghan et al. 1992; Suddaby <strong>and</strong> Ratcliffe 1997). Although literature on the diet <strong>of</strong><br />

Page 4 <strong>of</strong> 26<br />

61


Page 5 <strong>of</strong> 26 Ibis Submitted Manuscript<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

62<br />

<strong>Arctic</strong> Terns <strong>in</strong> Greenl<strong>and</strong> is very limited (Salomonsen 1950 mentioned zooplankton as<br />

important), it is likely that Capel<strong>in</strong> (Mallotus villosus) <strong>and</strong> <strong>in</strong>vertebrates are the ma<strong>in</strong><br />

components <strong>of</strong> the diet. In southern <strong>and</strong> central West Greenl<strong>and</strong>, Capel<strong>in</strong> is regarded as<br />

the key seabird prey species (Carscadden et al. 2002; Friis-Rødel <strong>and</strong> Kanneworff<br />

2002), but the l<strong>in</strong>k between seabird <strong>breed<strong>in</strong>g</strong> success <strong>and</strong> Capel<strong>in</strong> abundance has not yet<br />

been quantified.<br />

IBIS Review Copy<br />

In this paper, we study the effect <strong>of</strong> simulated harvest<strong>in</strong>g <strong>of</strong> <strong>Arctic</strong> Tern eggs on a)<br />

chick growth <strong>and</strong> reproductive success, <strong>and</strong> b) chick diet <strong>and</strong> forag<strong>in</strong>g strategies with<strong>in</strong><br />

the species’ core distribution area <strong>in</strong> West Greenl<strong>and</strong>. The study furthermore presents<br />

the first estimate <strong>of</strong> renest<strong>in</strong>g rates <strong>in</strong> <strong>Arctic</strong> Terns along with the first detailed<br />

description <strong>of</strong> <strong>Arctic</strong> Tern chick diet <strong>in</strong> West Greenl<strong>and</strong>.<br />

Study site<br />

Materials <strong>and</strong> Methods<br />

Fieldwork was conducted <strong>in</strong> the period 16 June to 30 July 2006 at the archipelago<br />

Kitsissunnguit (Grønne Ejl<strong>and</strong>) <strong>in</strong> the southern part <strong>of</strong> Disko Bay (68˚50’N, 52˚00’W),<br />

West Greenl<strong>and</strong> (Figure 1). Kitsissunnguit holds the largest <strong>Arctic</strong> Tern <strong>breed<strong>in</strong>g</strong> site <strong>in</strong><br />

Greenl<strong>and</strong> with approximately 20,000 pairs, with 17,000 <strong>of</strong> the pairs <strong>breed<strong>in</strong>g</strong> at Basis<br />

Ø – the location <strong>of</strong> the fieldwork conducted <strong>in</strong> 2006. The <strong>terns</strong> breed scattered over<br />

most <strong>of</strong> the isl<strong>and</strong>, usually with at least 2-4 meters between nests, <strong>and</strong> only few areas<br />

have no nests. The total area with <strong>breed<strong>in</strong>g</strong> <strong>terns</strong> was estimated to be 3.12 km 2 <strong>in</strong> 2006,<br />

with a low overall <strong>breed<strong>in</strong>g</strong> density <strong>of</strong> 5,400 nests per km 2 (0.005 pairs per m 2 ).


<strong>Arctic</strong> Terns arrive <strong>in</strong> this region dur<strong>in</strong>g the second half <strong>of</strong> May, <strong>and</strong> egg lay<strong>in</strong>g takes<br />

place <strong>in</strong> early June. The first fledgl<strong>in</strong>gs are usually seen around mid July, <strong>and</strong> colony<br />

exodus happens at the end <strong>of</strong> July. In early August only few birds are found <strong>in</strong> the<br />

colony. Although hatch<strong>in</strong>g is well synchronized with<strong>in</strong> large sections <strong>of</strong> the archipelago,<br />

a tendency towards later hatch<strong>in</strong>g is found when mov<strong>in</strong>g from the central part <strong>of</strong> the<br />

isl<strong>and</strong>s towards the outskirts <strong>of</strong> the colony. This tendency is even more pronounced<br />

IBIS Review Copy<br />

(with up to two week delay <strong>in</strong> hatch<strong>in</strong>g date) when mov<strong>in</strong>g W from Basis Ø towards the<br />

more exposed skerries, Saattuarsuit, <strong>in</strong> the archipelago (Pers. obs. Kitsissunnguit 2002-<br />

2006).<br />

Study plots<br />

Ibis Submitted Manuscript<br />

Two study plots were established with<strong>in</strong> the first week <strong>of</strong> the field season: a control plot<br />

(46 nests; size app. 13,000 m 2 ) <strong>and</strong> a plot where clutches were experimentally removed,<br />

designated the “relay plot” (30 nests; size app. 8,200 m 2 ) hereafter. Well-dra<strong>in</strong>ed, flat<br />

heather sections at the edge <strong>of</strong> large cont<strong>in</strong>uous areas <strong>of</strong> <strong>breed<strong>in</strong>g</strong> <strong>Arctic</strong> Terns<br />

comprised the habitat <strong>in</strong> both study plots, with a distance to the shorel<strong>in</strong>e <strong>of</strong><br />

approximately 200 <strong>and</strong> 100 m, respectively. Daily measurements <strong>of</strong> hatch<strong>in</strong>g stage,<br />

chick mass (to the nearest 0.1 g) <strong>and</strong> w<strong>in</strong>g length (to the nearest 1mm) were conducted<br />

<strong>in</strong> both plots <strong>in</strong> order to quantify chick age, growth rate <strong>and</strong> survival. The chicks <strong>in</strong> both<br />

study plots were kept <strong>in</strong> enclosures (chicken wire, mesh size 25 mm, height 25 cm,<br />

diameter app. 5 m), which ensured consistent measurements up to the age <strong>of</strong> fledg<strong>in</strong>g.<br />

Chicks <strong>in</strong> the control plot were monitored with daily measurements to the day <strong>of</strong><br />

fledg<strong>in</strong>g while the last day <strong>of</strong> measurements <strong>in</strong> the relay plot was 30 July, when A-<br />

chicks had an age <strong>of</strong> 9-11 days (day <strong>of</strong> hatch<strong>in</strong>g = day 0).<br />

Page 6 <strong>of</strong> 26<br />

63


Page 7 <strong>of</strong> 26 Ibis Submitted Manuscript<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

64<br />

In the relay plot one parent at each nest was caught us<strong>in</strong>g Kieler-traps, <strong>and</strong> biometric<br />

measurements, <strong>in</strong>clud<strong>in</strong>g bill length, were taken. The adult bird was dyed with picric<br />

acid on the right or left cheek <strong>and</strong> upper rump <strong>and</strong> fitted with a metal r<strong>in</strong>g <strong>and</strong> coloured<br />

darvic r<strong>in</strong>g before it was released. To ensure that no nests were ab<strong>and</strong>oned due to the<br />

h<strong>and</strong>l<strong>in</strong>g <strong>of</strong> the bird, the marked adult bird <strong>in</strong> each <strong>of</strong> 30 nests was observed <strong>in</strong>cubat<strong>in</strong>g<br />

before the eggs were removed. On 19 June, the eggs <strong>of</strong> the nests <strong>in</strong> the relay plot were<br />

IBIS Review Copy<br />

collected <strong>and</strong> the reproductive behaviour <strong>of</strong> the adult birds closely monitored <strong>in</strong> the 4-28<br />

days post removal. The comb<strong>in</strong>ation <strong>of</strong> marks used ensured that <strong>in</strong>dividual<br />

identification could be made from a distance <strong>of</strong> up to 30 meters us<strong>in</strong>g a 20-60x spott<strong>in</strong>g<br />

scope. The search for replacement nests was conducted with<strong>in</strong> the relay plot <strong>and</strong> <strong>in</strong> a<br />

100m strip around the plot.<br />

Feed<strong>in</strong>g observations<br />

Observations <strong>of</strong> food provision<strong>in</strong>g by the adult birds to the enclosed chicks were<br />

conducted <strong>in</strong> both the control plot <strong>and</strong> the relay nests from a hide positioned 10-25<br />

meters from the nests. Variables recorded dur<strong>in</strong>g the feed<strong>in</strong>g observations <strong>in</strong>cluded:<br />

time <strong>of</strong> the prey delivery, which chick was fed when the brood comprised two chicks,<br />

prey identity (to the highest taxonomic resolution possible), prey size (<strong>in</strong> relation to the<br />

bill <strong>of</strong> the adult bird) <strong>and</strong> the outcome <strong>of</strong> the prey delivery (successful or<br />

kleptoparasitised by other adult birds). In the relay plot, the provision<strong>in</strong>g (marked or<br />

unmarked) adult was also recorded. In order to m<strong>in</strong>imise bias orig<strong>in</strong>at<strong>in</strong>g from<br />

<strong>in</strong>dividual prey preferences <strong>in</strong> a parent bird, the hide was relocated on a regular basis to<br />

avoid long periods <strong>of</strong> observations on the same nests. The relocation <strong>of</strong> the hide was


always done at least 20 hours prior to feed<strong>in</strong>g observations to allow birds to habituate to<br />

its presence. Feed<strong>in</strong>g observations was conducted by three observers do<strong>in</strong>g 3-hour<br />

sessions, where feed<strong>in</strong>g observations dur<strong>in</strong>g <strong>and</strong> 10 m<strong>in</strong>utes after chang<strong>in</strong>g shifts were<br />

omitted from data analysis. Total duration <strong>of</strong> observation periods varied between three<br />

<strong>and</strong> twelve hours, <strong>in</strong>volv<strong>in</strong>g 3-4 nests at a time. Feed<strong>in</strong>g observations were conducted<br />

between 08:30 <strong>and</strong> 22:00 local time (GMT m<strong>in</strong>us 3 hours) on clear days. The weather<br />

IBIS Review Copy<br />

dur<strong>in</strong>g chick rear<strong>in</strong>g <strong>in</strong> both the control <strong>and</strong> relay group was generally good <strong>and</strong> did not<br />

<strong>in</strong>clude severe weather systems prevent<strong>in</strong>g the birds from forag<strong>in</strong>g. Furthermore, on<br />

days with strong w<strong>in</strong>d, heavy ra<strong>in</strong> or thick fog, feed<strong>in</strong>g observations were not<br />

conducted, to avoid bias from reduced forag<strong>in</strong>g performance <strong>in</strong> the adult bird (Hatch<br />

2002).<br />

Data analysis<br />

The data on feed<strong>in</strong>g observations from both study plots were subdivided <strong>in</strong>to three age-<br />

classes accord<strong>in</strong>g to chick age: 0-3 days, 4-7 days <strong>and</strong> 8-11 days. When compar<strong>in</strong>g<br />

chick diet between the two groups, feed<strong>in</strong>g observations were pooled <strong>in</strong>to “nest hours”<br />

(i.e. four hours <strong>of</strong> observation on three nests equals twelve nest hours). When<br />

compar<strong>in</strong>g feed<strong>in</strong>g rates between the two groups, observations were pooled <strong>in</strong>to 5-hour<br />

periods.<br />

The first hatched chick (the A-chick) is superior <strong>in</strong> competition with sibl<strong>in</strong>gs for food<br />

brought to the nest due to larger size <strong>and</strong> higher mobility (Langham 1972). In the<br />

current analysis, chick rank is <strong>in</strong>cluded as a prediction when compar<strong>in</strong>g diet <strong>and</strong> growth<br />

rates <strong>in</strong> control versus relay chicks.<br />

Ibis Submitted Manuscript<br />

Page 8 <strong>of</strong> 26<br />

65


Page 9 <strong>of</strong> 26 Ibis Submitted Manuscript<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

66<br />

Conversions <strong>of</strong> food item size from bill length to mm were done us<strong>in</strong>g the average<br />

culmen length <strong>of</strong> the adults caught <strong>and</strong> measured <strong>in</strong> the relay plot. Food items were<br />

scored <strong>in</strong> relation to the total bill length <strong>in</strong> the field, so <strong>in</strong> order to achieve an estimate <strong>of</strong><br />

prey item size, a factor <strong>of</strong> 0.25 was added to culmen length. Conversion factors from<br />

length to weight <strong>and</strong> calorific content were taken from Weslawski et al. (1994), F<strong>in</strong>ley<br />

et al. (1990), Bradstreet (1980), Harris <strong>and</strong> Hislop (1978) <strong>and</strong> Wigley et al. (2003). Wet<br />

IBIS Review Copy<br />

weights <strong>of</strong> both fish <strong>and</strong> fish larvae were converted to dry weight by divid<strong>in</strong>g by 4.35<br />

(Payne et al. 1999).<br />

In the comparison <strong>of</strong> means with equal variances <strong>and</strong> normal error distribution, t-tests<br />

were used. Data not normally distributed were normalized with an arcs<strong>in</strong>h-<br />

transformation. To test for difference <strong>in</strong> variances, F-tests were used, <strong>and</strong> differences <strong>in</strong><br />

means were tested us<strong>in</strong>g Welch’s approximate t (Zar 1999). All tests were two-tailed,<br />

<strong>and</strong> = 0.05 was taken as the threshold for significance. Estimates are presented as<br />

means with one st<strong>and</strong>ard error throughout the text. Daily chick survival probability was<br />

estimated us<strong>in</strong>g known-fate models <strong>in</strong> MARK (White <strong>and</strong> Burnham 1999), <strong>and</strong><br />

between-group differences were evaluated us<strong>in</strong>g likelihood ratio tests. These models<br />

allow for right-censor<strong>in</strong>g, i.e. the fact that chicks <strong>in</strong> the experimental nests were only<br />

followed until they were 9-11 days old.<br />

Calculations <strong>of</strong> area size were performed <strong>in</strong> GIS s<strong>of</strong>tware MapInfo 8.5. The Internal<br />

Egg Volume (IEV) <strong>of</strong> the <strong>Arctic</strong> Tern egg was estimated as IEV = 0.00048 LB 2 , where<br />

egg length (L) <strong>and</strong> breadth (B) were measured with electronic callipers.<br />

Results


Relay<strong>in</strong>g<br />

Of the 30 pairs whose clutches were removed, 16 pairs (53.3 %) were observed to<br />

produce a replacement clutch. All embryos <strong>in</strong> the collected eggs <strong>in</strong> the relay plot were <strong>in</strong><br />

the last half <strong>of</strong> their development stage (estimated 2-9 days from hatch<strong>in</strong>g), with<br />

expected hatch<strong>in</strong>g dates between 21 <strong>and</strong> 28 June. Eggs <strong>in</strong> the control plot hatched<br />

between 20 June <strong>and</strong> 3 July (median hatch<strong>in</strong>g date 23 June). The first replacement nests<br />

IBIS Review Copy<br />

were observed <strong>in</strong> the plot 28 June, <strong>and</strong> replacement eggs hatched between 19 July <strong>and</strong><br />

22 July. A backwards calculation us<strong>in</strong>g a 22 day <strong>in</strong>cubation period (Hatch 2002, Cramp<br />

1985) showed that replacement eggs were laid between 27 <strong>and</strong> 30 June – eight to eleven<br />

days post egg collection. Hence, the removal <strong>of</strong> eggs at the end <strong>of</strong> <strong>in</strong>cubation delayed<br />

the nest<strong>in</strong>g season <strong>of</strong> experimental nests by approximately four weeks (28 + 3 days)<br />

compared to the orig<strong>in</strong>al hatch<strong>in</strong>g date.<br />

Ibis Submitted Manuscript<br />

The mean clutch size (Table 3) <strong>of</strong> the control plot was 2.1 (+ 0.08, n = 46), similar to<br />

the relay plot where clutch size was 2.1 eggs (+ 0.07, n = 30) before egg removal. The<br />

mean clutch size (1.6 eggs, + 0.13, n = 16) <strong>in</strong> replacement nests was significantly lower<br />

( 2 = 16.8, p = 0.0002, df = 2) than <strong>in</strong> control nests <strong>and</strong> nests with experimentally<br />

removed eggs (pooled data). Total clutch volume (expressed as Internal Egg Volume)<br />

equalled 35.4 ml (+ 8.68, n = 42) on average per nest <strong>in</strong> the control plot, whereas IEV <strong>in</strong><br />

relay nests (27.8 ml, + 8.76, n = 11) was significantly lower (t = 2.53, df = 51, p =<br />

0.014). However, IEV <strong>of</strong> A-eggs <strong>in</strong> relay nests (17.34 ml, n = 11) were not different (F<br />

= 0.58, P = 0.45) from A-eggs <strong>in</strong> the control plot (17.69 ml, n = 55). B-eggs <strong>in</strong> relay<br />

nests (16.373 ml, n = 7) were near-significant smaller (F = 3.56 P = 0.06) compared<br />

Page 10 <strong>of</strong> 26<br />

67


Page 11 <strong>of</strong> 26 Ibis Submitted Manuscript<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

68<br />

with B-eggs from the control group (17.24 ml, n = 51), consistent with the smaller<br />

clutch size.<br />

Hatch<strong>in</strong>g rate <strong>in</strong> the relay plot (84.0%, + 37.4, n = 25) was lower, but not significantly<br />

different ( 2 = 0.6, p = 0.433, df = 1), than hatch<strong>in</strong>g <strong>in</strong> the control plot (91.8%, + 27.7, n<br />

= 97). The lower hatch<strong>in</strong>g rate <strong>in</strong> the relay plot was caused by higher nest ab<strong>and</strong>onment<br />

with two nests (both with two eggs) out <strong>of</strong> 16 nests (12.5%) ab<strong>and</strong>oned before hatch<strong>in</strong>g.<br />

IBIS Review Copy<br />

In the control plot only a s<strong>in</strong>gle case (2.2%) <strong>of</strong> nest ab<strong>and</strong>onment was observed.<br />

There were no <strong>in</strong>stances where the same nest scrapes were reused, <strong>and</strong> replacement<br />

nests were located between 6.0 <strong>and</strong> 100.6 m (mean 23.4 + 7.65) from the orig<strong>in</strong>al nest.<br />

Chick production <strong>and</strong> growth rate<br />

It is very rare that B-chicks (or C-chicks) survive to the age <strong>of</strong> fledg<strong>in</strong>g <strong>in</strong> Disko Bay<br />

(pers. obs. Kitsissunnguit 2002-2005), but the 2006-season had a “high” proportion <strong>of</strong><br />

B-chicks that survived to fledgl<strong>in</strong>g. In the control plot, where the fate <strong>of</strong> chicks from 2-<br />

egg clutches was known <strong>in</strong> 37 nests, five <strong>of</strong> the pairs (13.5%) fledged two chicks. This<br />

was not different ( 2 = 0.15, df = 1, p = 0.7) from the relay plot where one (11.1%) <strong>of</strong><br />

n<strong>in</strong>e two-egg clutches produced two chicks beyond the age <strong>of</strong> 11 days.<br />

Daily chick survival varied with age, <strong>and</strong> this variation could parsimoniously be<br />

modelled with four age groups: 0-1 days, 2-5 days, 6-10 days, <strong>and</strong> 11 days <strong>and</strong> over.<br />

These age groups were based on post-hoc exam<strong>in</strong>ation <strong>of</strong> estimates from a model with<br />

full daily variation <strong>in</strong> survival <strong>and</strong> thus to some extent arbitrary, but the<br />

ma<strong>in</strong> conclusions <strong>in</strong> the follow<strong>in</strong>g were unchanged when us<strong>in</strong>g other models for age<br />

variation (constancy, full daily variation, quadratic trend). Survival differed between A,


B, <strong>and</strong> C chicks ( 2 = 20.5, df = 2, P < 0.0001), but there was no difference between<br />

control <strong>and</strong> experimental chicks (2 = 0.033, df = 1, P = 0.85). Estimated daily survival<br />

was very high from 0-1 days (0.996, 0.986, <strong>and</strong> 0.964 for A, B <strong>and</strong> C chicks,<br />

respectively), low from 2-5 days (0.947, 0.836, <strong>and</strong> 0.658), higher from 6-10 days<br />

(0.982, 0.939, <strong>and</strong> 0.852), <strong>and</strong> very high after 11 days (0.998, 0.992, <strong>and</strong> 0.979).<br />

Estimated overall survival to fledg<strong>in</strong>g was 0.691 (+ 0.066) for A chicks, 0.293 (+ 0.073)<br />

IBIS Review Copy<br />

for B chicks <strong>and</strong> 0.050 (+ 0.081) for C chicks.<br />

The daily growth rate (Table 3), from day four to eleven <strong>of</strong> the control group (6.39 g +<br />

0.62) did not differ significantly (t = 0.01; df = 58, p = 0.992) from that <strong>of</strong> chicks<br />

hatched from experimental clutches (6.61 g + 0.82). Similarly, growth rate <strong>of</strong> w<strong>in</strong>g<br />

length did not differ between the two groups (control 7.66 mm + 1.55 vs. relay 7.66 mm<br />

+ 0.67; test: t = 0.31; df = 58, p = 0.761).<br />

Diet<br />

Ibis Submitted Manuscript<br />

A total <strong>of</strong> n<strong>in</strong>e different prey species were identified from 1237 prey deliveries to the A-<br />

chick (summarized <strong>in</strong> Table 1) <strong>in</strong> the control <strong>and</strong> the relay plot comb<strong>in</strong>ed, orig<strong>in</strong>at<strong>in</strong>g<br />

from 203 <strong>and</strong> 155 nest hours <strong>of</strong> observation, respectively (Table 2). Unidentified prey<br />

items comprised approximately 7 % <strong>of</strong> the total number <strong>of</strong> observed feeds. The majority<br />

(>90%) <strong>of</strong> these feeds were unidentified fish larvae. The most numerous prey species<br />

was Capel<strong>in</strong>, account<strong>in</strong>g for 20.0-77.6 % <strong>of</strong> prey numbers <strong>in</strong> the three age groups <strong>and</strong><br />

between 97.1 <strong>and</strong> 99.9 % <strong>of</strong> the correspond<strong>in</strong>g energy (fish <strong>and</strong> fish larvae comb<strong>in</strong>ed) <strong>in</strong><br />

the control group. In the relay group only one feed with a juvenile Capel<strong>in</strong> (i.e. older<br />

Page 12 <strong>of</strong> 26<br />

69


Page 13 <strong>of</strong> 26 Ibis Submitted Manuscript<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

70<br />

than 0-group but not spawn<strong>in</strong>g) was observed. Still, Capel<strong>in</strong> larvae accounted for<br />

between 47.7 <strong>and</strong> 73.7 % by numbers <strong>and</strong> between 37.1 <strong>and</strong> 51.4 % <strong>of</strong> the energy<br />

brought to replacement chicks. The size <strong>of</strong> Capel<strong>in</strong> larvae (0-group) averaged 29 mm<br />

estimated from an average observed prey size <strong>of</strong> 0.74 (+ 0.005, n = 627) bill length<br />

when apply<strong>in</strong>g the average bill size (culmen = 31.6 mm, n = 26, + 0.255) found <strong>in</strong> the<br />

adult birds at Kitsissunnguit.<br />

IBIS Review Copy<br />

The only other post-larval fish observed <strong>in</strong> the chick diet was two successful deliveries<br />

with Polar Cod (Boreogadus saida) to replacement chicks (Table 1). Two other fish<br />

larvae were recorded <strong>in</strong> the diet: Stichaeidae sp. <strong>and</strong> Wolffish (Anarhichas spp.) with<br />

362 <strong>and</strong> 91 successful deliveries, respectively <strong>and</strong> only found <strong>in</strong> the diet <strong>of</strong> replacement<br />

chicks. Other prey species identified <strong>in</strong> the diet was Gammarus spp. (46 deliveries),<br />

shrimp P<strong>and</strong>alus ssp. (2 deliveries) – from trawler discard <strong>and</strong> butterfly (Lepidoptera<br />

spp.) larvae (2 feeds). These did not, however, contribute significantly to energy<br />

provision with<strong>in</strong> the three age groups (


Ibis Submitted Manuscript<br />

<strong>in</strong> the mean amount <strong>of</strong> energy brought to the chicks (t = 1.26, df = 30, P = 0.219). The<br />

oldest chicks showed the same pattern, with the number <strong>of</strong> feeds be<strong>in</strong>g significantly<br />

higher <strong>in</strong> replacement chicks than <strong>in</strong> the control chicks (Welch’s approximate t = 2.42,<br />

df = 7, P = 0.046), while the amount <strong>of</strong> energy was not (t = 1.01, df = 24, P = 0.111).<br />

Kleptoparasitism was only observed <strong>in</strong> the control plot, where 30 <strong>of</strong> 81 Capel<strong>in</strong> feeds<br />

(37.0 %) were stolen by other adult birds before a successful delivery to the chick <strong>in</strong> the<br />

IBIS Review Copy<br />

nest. Significant differences <strong>in</strong> kleptoparasitism between experimental <strong>and</strong> control plot<br />

could be detected <strong>in</strong> the two oldest age groups (4-7 days: 2 = 146.67, df = 1; 8-11 days:<br />

2 = 39.64, df =1). The only prey species targeted by kleptoparasites was large Capel<strong>in</strong>.<br />

Stolen fish (10.28 cm + 3.54, n = 29) were significantly larger (t = 2.677, df = 78, P =<br />

0.007) than Capel<strong>in</strong> fed to the chick (8.82 cm + 2.11, n = 51).<br />

Discussion<br />

The study at Kitsissunnguit reveals a strik<strong>in</strong>g difference <strong>in</strong> diet composition between<br />

non-manipulated nests <strong>and</strong> nests with simulated egg harvest<strong>in</strong>g with<strong>in</strong> the same<br />

<strong>breed<strong>in</strong>g</strong> season. The predom<strong>in</strong>ant prey dur<strong>in</strong>g the first chick-rear<strong>in</strong>g period, juvenile<br />

Capel<strong>in</strong>s, was virtually absent with only one delivery observed <strong>in</strong> the relay group versus<br />

81 (51 successful) Capel<strong>in</strong> deliveries <strong>in</strong> the control group. Dur<strong>in</strong>g the four-week delay<br />

<strong>in</strong> the <strong>breed<strong>in</strong>g</strong> cycle, it is likely that a shift <strong>in</strong> available food items <strong>in</strong> the upper layers<br />

<strong>of</strong> the water column have taken place. The parent birds switched to an alternative prey<br />

<strong>and</strong> hence altered the duration <strong>of</strong> the feed<strong>in</strong>g trips from long to short trips. In the two<br />

older age groups (4-11 days), this shift resulted <strong>in</strong> 10-15 times higher item provision<strong>in</strong>g<br />

rate <strong>in</strong> the relay group, however Capel<strong>in</strong> fish larvae conta<strong>in</strong> less than 2% <strong>of</strong> the energy<br />

Page 14 <strong>of</strong> 26<br />

71


Page 15 <strong>of</strong> 26 Ibis Submitted Manuscript<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

72<br />

<strong>of</strong> a 10 cm Capel<strong>in</strong> <strong>and</strong> so the total amount <strong>of</strong> energy brought to the relay chicks did not<br />

differ from that <strong>of</strong> the control group.<br />

Surpris<strong>in</strong>gly, despite the altered food availability, survival <strong>and</strong> growth <strong>of</strong> chicks hatched<br />

from replacement eggs were similar to those <strong>in</strong> the control group up to the age <strong>of</strong> 11<br />

days at least. Thus, the adult birds were able to compensate for the low quality diet by<br />

<strong>in</strong>creas<strong>in</strong>g the feed<strong>in</strong>g rate significantly without adverse effects on chick growth or<br />

IBIS Review Copy<br />

survival. However, the fate <strong>of</strong> the replacement chicks could only be monitored to the<br />

age <strong>of</strong> n<strong>in</strong>e to eleven days, whereas the control group could be followed to the day <strong>of</strong><br />

fledg<strong>in</strong>g. Chick mortality due to starvation usually occurs with<strong>in</strong> the first three to eight<br />

days for chicks hatched from first nest<strong>in</strong>g attempts, <strong>and</strong> we assumed that survival to day<br />

11 was equivalent to fledg<strong>in</strong>g. However, starvation <strong>of</strong> near-fledged tern chicks has been<br />

documented <strong>in</strong> Shetl<strong>and</strong> (Monaghan et al. 1989), probably ow<strong>in</strong>g to vertical migration<br />

<strong>of</strong> prey fish, <strong>and</strong> this could have affected <strong>terns</strong> chicks hatched from replacement nests <strong>in</strong><br />

Kitsissunnguit after the study ceased.<br />

Another behavioural feature associated with feed<strong>in</strong>g that differed between the two<br />

groups <strong>of</strong> chicks was the absence <strong>of</strong> <strong>in</strong>traspecific kleptoparasitism <strong>in</strong> the relay group.<br />

Steele <strong>and</strong> Hockey (1995) found that prey represent<strong>in</strong>g long h<strong>and</strong>l<strong>in</strong>g times was most<br />

likely to be stolen by conspecific <strong>in</strong>dividuals. Other <strong>in</strong>vestigators (Hopk<strong>in</strong>s <strong>and</strong> Wiley<br />

1972; Ratcliffe et al. 1997; Stienen et al. 2001; Dies <strong>and</strong> Dies 2005) found that larger<br />

fish st<strong>and</strong> a higher risk <strong>of</strong> kleptoparasitism. This was also the situation at Kitsissunnguit,<br />

where only larger fish <strong>and</strong> not fish larvae were kleptoparasitised, <strong>and</strong> stolen fish on<br />

average were 16.5% larger than those fed to chicks. Kleptoparasitism may also<br />

<strong>in</strong>fluence chick feed<strong>in</strong>g <strong>in</strong> other ways than the actual chance <strong>of</strong> los<strong>in</strong>g the fish. H<strong>and</strong>l<strong>in</strong>g


time when deliver<strong>in</strong>g a fish was very high due to other adults pursu<strong>in</strong>g the feeder, hence<br />

reduc<strong>in</strong>g provision<strong>in</strong>g rate even if the prey was delivered to the chick.<br />

Potential predators on <strong>Arctic</strong> Tern eggs <strong>and</strong> chicks, such as Glaucous Gull (Larus<br />

hyperboreus), Great Black-backed Gull (Larus mar<strong>in</strong>us), Common Raven (Corvus<br />

corax) <strong>and</strong> <strong>Arctic</strong> Skua (Stercorarius parasiticus) were observed close to or sometimes<br />

with<strong>in</strong> the borders <strong>of</strong> the colony. The presence <strong>of</strong> avian predators along the shorel<strong>in</strong>e<br />

IBIS Review Copy<br />

did not cause a response from the many <strong>breed<strong>in</strong>g</strong> birds, but when the predator moved<br />

<strong>in</strong>to the air space above areas with nests, large numbers (usually hundreds) <strong>of</strong> <strong>terns</strong><br />

would jo<strong>in</strong> <strong>in</strong> an effective, mutual mobb<strong>in</strong>g <strong>of</strong> the <strong>in</strong>truder. There were no <strong>in</strong>cidents <strong>of</strong><br />

egg predation with<strong>in</strong> the study plots (n = 121 eggs) <strong>and</strong> amongst the hatched eggs (n =<br />

108), 52 chicks survived to fledg<strong>in</strong>g (or presumed fledg<strong>in</strong>g (n = 13) <strong>in</strong> the relay plot),<br />

51 chicks died from starvation <strong>and</strong> five chicks “disappeared” from the enclosures <strong>and</strong><br />

could not be found aga<strong>in</strong> – it is likely that these five chicks were predated. No chick<br />

predation was observed <strong>in</strong> the relay plot. Predation from Peregr<strong>in</strong>e Falcons (Falco<br />

peregr<strong>in</strong>us) was regularly observed on fledgl<strong>in</strong>gs <strong>and</strong> adult birds. Overall, the predation<br />

level at Kitsissunnguit must be considered low compared to other studies (Hatch 2002,<br />

Cramp 1985).<br />

Ibis Submitted Manuscript<br />

A weakness <strong>of</strong> the study at Kitsissunnguit is that we could not obta<strong>in</strong> <strong>in</strong>formation on<br />

survival beyond day 11 <strong>in</strong> replacement chicks. However, the high survival rate <strong>of</strong> chicks<br />

older that 11 days with<strong>in</strong> the control group <strong>in</strong> the same <strong>breed<strong>in</strong>g</strong> season, comb<strong>in</strong>ed with<br />

low observed predation rate <strong>and</strong> an equal growth rate amongst replacement chicks <strong>and</strong><br />

control chicks, makes it very likely that these chicks would <strong>in</strong> fact survive to fledg<strong>in</strong>g.<br />

Another weakness is the estimate <strong>of</strong> the proportion <strong>of</strong> relay<strong>in</strong>g <strong>breed<strong>in</strong>g</strong> pairs. Although<br />

Page 16 <strong>of</strong> 26<br />

73


Page 17 <strong>of</strong> 26 Ibis Submitted Manuscript<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

74<br />

considerate observation time was spent <strong>in</strong> the relay plot, at the surround<strong>in</strong>gs <strong>and</strong> <strong>in</strong> the<br />

colony <strong>in</strong> general, we can not completely rule out the possibility that more replacement<br />

nests may have occurred. The estimate <strong>in</strong> this study, where approximately half <strong>of</strong> the<br />

birds relayed, should be regarded as a low-end estimate. This estimate should<br />

furthermore be seen <strong>in</strong> a context <strong>of</strong> variation <strong>of</strong> favourable feed<strong>in</strong>g conditions between<br />

years that may affect the ability to relay, <strong>and</strong> more importantly, that removal <strong>of</strong> eggs<br />

IBIS Review Copy<br />

earlier <strong>in</strong> the season may have <strong>in</strong>duced a higher degree <strong>of</strong> relay<strong>in</strong>g, as found by Feare<br />

(1976) <strong>in</strong> Sooty Terns.<br />

When summariz<strong>in</strong>g the results <strong>of</strong> this study regard<strong>in</strong>g the potential effects <strong>of</strong> egg<br />

harvest<strong>in</strong>g, the equal growth rate <strong>and</strong> chick survival <strong>in</strong> the two groups comb<strong>in</strong>ed with<br />

the absence <strong>of</strong> kleptoparasitism <strong>in</strong> the relay group may <strong>in</strong>dicate only a m<strong>in</strong>or negative<br />

effect <strong>of</strong> harvest<strong>in</strong>g. However, only 53.3 % <strong>of</strong> <strong>breed<strong>in</strong>g</strong> pairs produced a replacement<br />

clutch, which <strong>in</strong> itself reduced the reproductive outcome <strong>of</strong> the current <strong>breed<strong>in</strong>g</strong> season<br />

substantially. Also, clutch size was lower <strong>in</strong> the <strong>breed<strong>in</strong>g</strong> pairs that did produce a<br />

replacement clutch. Furthermore, the long-term effects on the adult birds <strong>of</strong> the<br />

markedly higher feed<strong>in</strong>g rates found <strong>in</strong> replacement nests may be an important aspect at<br />

the <strong>in</strong>dividual level.<br />

Acknowledgements<br />

We would like to thank Rasmus Lauridsen, Greenl<strong>and</strong> Institute <strong>of</strong> Natural Resources<br />

<strong>and</strong> Peter Søgaard Jørgensen, University <strong>of</strong> Copenhagen for assistance with data<br />

collection, <strong>and</strong> F<strong>in</strong>n Steffens, capta<strong>in</strong> <strong>of</strong> M/S “Maja S” <strong>of</strong> Qeqertarsuaq for logistical<br />

support. The fieldwork at Kitsissunnguit <strong>in</strong> 2006 was f<strong>in</strong>ancially supported by<br />

Greenl<strong>and</strong> Institute <strong>of</strong> Natural Resources <strong>and</strong> the Commission for Scientific Research <strong>in</strong>


Greenl<strong>and</strong> (KVUG). Permits required to conduct fieldwork, h<strong>and</strong>le birds <strong>and</strong> collect<br />

eggs were provided by the Greenl<strong>and</strong> Home Rule, Directorate <strong>of</strong> Environment <strong>and</strong><br />

Nature.<br />

References<br />

IBIS Review Copy<br />

Boertmann, D. (1994). An annotated checklist to the birds <strong>of</strong> Greenl<strong>and</strong>. Meddelelser<br />

om Grønl<strong>and</strong>, Bioscience 38: 1-63.<br />

Boertmann, D., A. Mosbech, K. Falk <strong>and</strong> K. Kampp (1996). Seabird colonies <strong>in</strong> western<br />

Greenl<strong>and</strong> (60˚-79˚30´ N. lat.). National Environmental research Institute, Denmark.<br />

148 pp – NERI Technical Report No. 170.<br />

Bradstreet, M. S. W. (1980). Thick-billed murres <strong>and</strong> black guillemots <strong>in</strong> the Barrow<br />

Strait area, N. W. T., dur<strong>in</strong>g spr<strong>in</strong>g: diets <strong>and</strong> food availability along ice edges.<br />

Canadian Journal <strong>of</strong> Zoology 58, pp 2120-2140.<br />

Brown, K. M. <strong>and</strong> R. D. Morris (1996). From tragedy to triumph: Renest<strong>in</strong>g <strong>in</strong> r<strong>in</strong>g-<br />

billed gulls. Auk 113(1): 23-31.<br />

Carscadden, J. E., W. A. Montevecchi, G. K. Davoren <strong>and</strong> B. S. Nakashima (2002).<br />

Trophic relationships along capel<strong>in</strong> (Mallotus villosus) <strong>and</strong> seabirds <strong>in</strong> a chang<strong>in</strong>g<br />

ecosystem. ICES Journal <strong>of</strong> Mar<strong>in</strong>e Science 59: 1027-1033.<br />

Cramp, S. Eds. (1985). Terns to woodpeckers. Birds <strong>of</strong> the Western Palearctic. Vol 4.<br />

Oxford, Oxford University Press.<br />

Ibis Submitted Manuscript<br />

Page 18 <strong>of</strong> 26<br />

75


Page 19 <strong>of</strong> 26 Ibis Submitted Manuscript<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

76<br />

Dies, J. I. <strong>and</strong> B. Dies (2005). Kleptoparasitism <strong>and</strong> Host Responses <strong>in</strong> a S<strong>and</strong>wich Tern<br />

Colony <strong>of</strong> Eastern Spa<strong>in</strong>. Waterbirds: 167-171.<br />

Egevang, C., K. Kampp <strong>and</strong> D. Boertmann (2004). The Breed<strong>in</strong>g Association <strong>of</strong> Red<br />

Phalaropes (Phalaropus fulicarius) with <strong>Arctic</strong> Terns (Sterna paradisaea): Response to<br />

a Redistribution <strong>of</strong> Terns <strong>in</strong> a Major Greenl<strong>and</strong> Colony. Waterbirds 27(4): 406-410.<br />

IBIS Review Copy<br />

Feare, C. J. (1976). The <strong>breed<strong>in</strong>g</strong> <strong>of</strong> the Sooty Tern <strong>in</strong> the Seychelles <strong>and</strong> the effect <strong>of</strong><br />

experiemental removal <strong>of</strong> its eggs. J. Zool., (Lond.) 179: 317-360.<br />

F<strong>in</strong>ley, K. J., M. S. W. Bradstreet <strong>and</strong> G. W. Miller (1990). Summer feed<strong>in</strong>g ecology <strong>of</strong><br />

Harp Seals (Phoca groenl<strong>and</strong>ica) <strong>in</strong> relation to <strong>Arctic</strong> Cod (Boreogadus saida) <strong>in</strong> the<br />

Canadian high <strong>Arctic</strong>. Polar Biology, 10, pp 609-618.<br />

Friis-Rødel, E. <strong>and</strong> P. Kanneworff (2002). A review <strong>of</strong> Capel<strong>in</strong> (Mallotus villosus) <strong>in</strong><br />

Greenl<strong>and</strong> waters. ICES Journal <strong>of</strong> Mar<strong>in</strong>e Science 59: 890-896.<br />

Furness, R. W. <strong>and</strong> Tasker, M. L. (2000) Seabird-fishery <strong>in</strong>teractions: quantify<strong>in</strong>g the<br />

sensitivity <strong>of</strong> seabirds to reductions <strong>in</strong> the s<strong>and</strong>eel abundance, <strong>and</strong> identification <strong>of</strong> key<br />

areas for sensitive seabirds <strong>in</strong> the North Sea. Mar<strong>in</strong>e Ecology Progress Series, 202: 253-<br />

264.<br />

Harris, M. P. <strong>and</strong> J. R. G. Hislop (1978). The food <strong>of</strong> young Puff<strong>in</strong>s Fratercula arctica.<br />

Journal <strong>of</strong> zoology, London, 185, pp 213-236.<br />

Hatch, J. J. (2002). <strong>Arctic</strong> Tern (Sterna paradisaea). In The birds <strong>of</strong> North America, no.<br />

707 (A. Poole <strong>and</strong> F. Gill, eds.). The Birds <strong>of</strong> North America, Inc., Philadelphia, PA.


Hegyi, Z. <strong>and</strong> L. Sasvari (1998). Parental Condition <strong>and</strong> Breed<strong>in</strong>g Effort <strong>in</strong> Waders. The<br />

Journal <strong>of</strong> Animal Ecology 67(1): 41-53.<br />

Hipfner, J. M. (2001). Fitness-related consequences <strong>of</strong> relay<strong>in</strong>g <strong>in</strong> an arctic seabird:<br />

survival <strong>of</strong> <strong>of</strong>fspr<strong>in</strong>g to recruitment age. The Auk 118 (4), pp 1076-1080.<br />

Hipfner, J. M., A. J. Gaston, D. L. Mart<strong>in</strong> <strong>and</strong> I. L. Jones (1999). Seasonal decl<strong>in</strong>es <strong>in</strong><br />

IBIS Review Copy<br />

replacement egg-lay<strong>in</strong>g <strong>in</strong> long-lived seabirds: costs <strong>of</strong> late <strong>breed<strong>in</strong>g</strong> or variation <strong>in</strong><br />

female quality? Journal <strong>of</strong> Animal Ecology 68: 988-998.<br />

Hopk<strong>in</strong>s, C. D. <strong>and</strong> R. H. Wiley (1972). Food parasitism <strong>and</strong> competition <strong>in</strong> two <strong>terns</strong>.<br />

Auk 89: 583-594.<br />

Ibis Submitted Manuscript<br />

Langham, N. P. E. (1972). Chick survival <strong>in</strong> <strong>terns</strong> (Sterna spp.) with special reference to<br />

the common tern. Journal <strong>of</strong> Animal Ecology 41: 385-395.<br />

Monaghan, P., J. D. Uttley <strong>and</strong> M. D. Burns (1992). Effect <strong>of</strong> changes <strong>in</strong> food<br />

availability on reproductive effort <strong>in</strong> arctic <strong>terns</strong> Sterna paradisaea. Ardea 80(1): 71-81.<br />

Monaghan, P., J. D. Uttley, M. D. Burns, C. Tha<strong>in</strong>e <strong>and</strong> J. Blackwood (1989). The<br />

relationship between food supply, reproductive effort <strong>and</strong> <strong>breed<strong>in</strong>g</strong> success <strong>in</strong> <strong>Arctic</strong><br />

Terns Sterna paradisaea. Journal <strong>of</strong> Animal Ecology 58: 261-274.<br />

Payne, S. A., B. A. Johnson <strong>and</strong> R. S. Otto (1999). Proximate composition <strong>of</strong> some<br />

north-eastern Pacific forage fish species. Fisheries Oceanography 8:3, pp 159-177.<br />

Perr<strong>in</strong>s, C. M. (1970). “The tim<strong>in</strong>g <strong>of</strong> birds' <strong>breed<strong>in</strong>g</strong> seasons. Ibis 112:242-255<br />

Page 20 <strong>of</strong> 26<br />

77


Page 21 <strong>of</strong> 26 Ibis Submitted Manuscript<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

78<br />

Ratcliffe, N., D. Richardson, R. Lidstone Scott, P. J. Bond, C. Westlake <strong>and</strong> S. Stennett<br />

(1997). Host Selection, Attack Rates <strong>and</strong> Success Rates for Black-Headed Gull<br />

Kleptoparasitism <strong>of</strong> Terns. Colonial Waterbirds 20(2): 227-234.<br />

Regehr, H. M. <strong>and</strong> M. S. Rodway (1999). Seabird Breed<strong>in</strong>g Performance dur<strong>in</strong>g Two<br />

Years <strong>of</strong> Delayed Capel<strong>in</strong> Arrival <strong>in</strong> the Northwest Atlantic: A Multi-Species<br />

Comparison. Waterbirds 22(1): 60-67.<br />

IBIS Review Copy<br />

Salomonsen, F. (1950). Grønl<strong>and</strong>s Fugle. The Birds <strong>of</strong> Greenl<strong>and</strong>. Copenhagen,<br />

Munksgaard.<br />

Steele, W. K. <strong>and</strong> P. A. R. Hockey (1995). factors <strong>in</strong>fluenc<strong>in</strong>g rate <strong>and</strong> success <strong>of</strong><br />

<strong>in</strong>traspecific kleptoparasitism among kelp gulls (Larus dom<strong>in</strong>icanus). The auk 112(8):<br />

847-859.<br />

Stienen, E. W. M., A. Brenn<strong>in</strong>kmeijer <strong>and</strong> C. E. Geschiere (2001). “Liv<strong>in</strong>g with gulls:<br />

the consequences for S<strong>and</strong>wich Terns <strong>of</strong> <strong>breed<strong>in</strong>g</strong> <strong>in</strong> association with Black-headed<br />

Gulls. Waterbirds 24:68-82.<br />

Suddaby, D. <strong>and</strong> N. Ratcliffe (1997). The Effects <strong>of</strong> Fluctuat<strong>in</strong>g Food Availability on<br />

Breed<strong>in</strong>g <strong>Arctic</strong> Terns (Sterna paradisaea). Auk 114(3): 524-530.<br />

Uttley, J., P. Monaghan, & S. White (1989). Differential effects <strong>of</strong> reduced s<strong>and</strong>eel<br />

availability on two sympatrically <strong>breed<strong>in</strong>g</strong> species <strong>of</strong> tern. Ornis Sc<strong>and</strong><strong>in</strong>avica 20: 273-<br />

277.


Wendeln, H., P. H. Becker <strong>and</strong> J. Gonzáles-Solís (2000). Parental care <strong>of</strong> replacement<br />

clutches <strong>in</strong> common <strong>terns</strong> (Sterna hirundo). Behaviour Ecology Socio<strong>biology</strong> 47: 382-<br />

392.<br />

Weslawski, J. M., L. Stempniewicz <strong>and</strong> K. Galaktionov (1994). Summer diet <strong>of</strong><br />

seabirds from the Frans Josef L<strong>and</strong> archipelago, Russian <strong>Arctic</strong>. Polar research 13(2),<br />

pp 173-181.<br />

IBIS Review Copy<br />

White, G.C. <strong>and</strong> K.P. Burnham (1999). Program MARK: survival estimation from<br />

populations <strong>of</strong> marked animals. Bird Study 46 (suppl.), 120-139.<br />

Wigley, S. E., H. M. McBride <strong>and</strong> N. J. McHugh (2003). Lenght-weight relationships<br />

for 74 fish species collected dur<strong>in</strong>g NEFSC research vessel bottom trawl surveys, 1992-<br />

99. NOAA Technical Memor<strong>and</strong>um NMFS-NE-171. U.S. Department <strong>of</strong> Commerce.<br />

Zar, J. H. 1999. Biostatistical Analysis. 4th edition, Prentice Hall, Englewood, New<br />

Jersey.<br />

Ibis Submitted Manuscript<br />

Page 22 <strong>of</strong> 26<br />

79


Page 23 <strong>of</strong> 26 Ibis Submitted Manuscript<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

80<br />

Table 1. The number <strong>of</strong> successful prey deliveries (n = 1237), prey group <strong>and</strong><br />

correspond<strong>in</strong>g energy (% <strong>of</strong> total energy with<strong>in</strong> the age group) fed to <strong>Arctic</strong> tern Achicks<br />

at Kitsissunnguit 2006. Observations are subdivided <strong>in</strong>to three age groups for<br />

both control chicks (203 nest hours) <strong>and</strong> replacement chicks (155 nest hours). The prey<br />

group “Fish larvae” covers three “0-group” fish species whereas “Others” covers both<br />

mar<strong>in</strong>e (Gammarus spp., P<strong>and</strong>alus ssp.) <strong>and</strong> terrestrial (Lepidoptera spp., Arachnids)<br />

species (see Results for details).<br />

IBIS Review Copy<br />

Control Relay<br />

Chick age Species/group Number (%) Energy (%) Number (%) Energy (%)<br />

Capel<strong>in</strong> 4 (7.3) 84 1 (1.5) 22<br />

0-3 days Fish larvae 7 (12.7) 11 65 (98.5) 78<br />

Others 44 (80.0) 5 0 0<br />

Capel<strong>in</strong> 24 (28.2) 99 0 0<br />

4-7 days Fish larvae 15 (17.7) 1 648 (99.7) 100<br />

Others 46 (54.1) 0 2 (0.3) 0<br />

Capel<strong>in</strong> 22 (44.9) 98 0 0<br />

8-11 days<br />

<strong>Arctic</strong> cod<br />

Fish larvae<br />

0<br />

16 (32.7)<br />

0<br />

2<br />

2 (0.6)<br />

329 (99.4)<br />

13<br />

87<br />

Others 11 (22.5) 0 0 0


Table 2. Feed<strong>in</strong>g rate (numbers <strong>and</strong> energy), prey size <strong>and</strong> kleptoparasitism <strong>in</strong> control<br />

<strong>and</strong> replacement nests <strong>of</strong> <strong>Arctic</strong> Tern, Kitsissunnguit 2006 divided <strong>in</strong>to age groups<br />

(days). Numbers (n) <strong>of</strong> five-hour periods are presented under each age group <strong>and</strong> values<br />

are listed as mean (+ SE) except for kleptoparasitism (frequency <strong>and</strong> proportion<br />

presented). The number <strong>of</strong> 5-hour periods <strong>in</strong> feed<strong>in</strong>g rate observations are <strong>in</strong>dicated by<br />

“n =” while “n =” <strong>in</strong> prey size <strong>in</strong>dicate the number <strong>of</strong> prey items recorded. P-value from<br />

statistic tests (t-test <strong>and</strong> Chi square for kleptoparasitism) is shown for each group.<br />

Mean feed<strong>in</strong>g rate<br />

(feed<strong>in</strong>gs/5 hours)<br />

Mean feed<strong>in</strong>g rate (kj/5<br />

hours)<br />

Mean prey size (dw <strong>in</strong><br />

mg)<br />

Frequency <strong>of</strong><br />

kleptoparasitism<br />

(proportion stolen)<br />

Ibis Submitted Manuscript<br />

IBIS Review Copy<br />

Age group Control<br />

Experimental<br />

nests<br />

P<br />

value<br />

0-3 (n = 4/10) 13.8 (6.2) 6.6 (1.3) 0.333<br />

4-7 (n = 19/13) 4.5 (0.9) 49.2 (12.0) 0.003<br />

8-11 (n = 18/8) 2.7 (0.5) 41.0 (15.8) 0.046<br />

0-3 (n = 4/10) 8.8 (3.7) 10.0 (3.0) 0.816<br />

4-7 (n = 19/13) 27.2 (7.9) 32.1 (7.4) 0.219<br />

8-11 (n = 18/8) 21.3 (5.3) 37.1 (9.0) 0.111<br />

0-3 (n = 55/66) 26.3 (11.4) 61.3 (14.9) 0.077<br />

4-7 (n = 85/651) 238.6 (51.0) 26.5 (1.2) < 0.001<br />

8-11 (n = 49/331) 306.8 (70.8) 37.1 (4.9) < 0.001<br />

0-3 2%(1/56) 0 0.928<br />

4-7 19% (20/105) 0 < 0.001<br />

8-11 18% (11/60) 0 < 0.001<br />

Page 24 <strong>of</strong> 26<br />

81


Page 25 <strong>of</strong> 26 Ibis Submitted Manuscript<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

82<br />

Table 3. Summary <strong>of</strong> the f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> replacement nests <strong>and</strong> control nests <strong>in</strong> <strong>Arctic</strong> <strong>terns</strong><br />

at Kitsissunnguit 2006.<br />

Control N Relay n<br />

IBIS Review Copy<br />

Clutch size 2.1 + 0.08 1 76 1.6 + 0.13 16<br />

Internal Egg Volume (ml) per nest 35.4 + 1.34 1 42 27.8 + 2.64 11<br />

Nests with 3 eggs (%) 7 (15.2%) 1 46 0 (0%) 16<br />

Hatch<strong>in</strong>g success 90.6% 96 84.0% 25<br />

Reproductive outcome (chicks per nest) 0.85 ± 0.088 46 0.88 + 0.125 2 16<br />

Daily w<strong>in</strong>g growth rate (age 4-11 days) 7.66 mm + 1.55 35 3 7.66 mm + 0.67 13 4<br />

Daily mass <strong>in</strong>crease (age 4-11 days) 6.39 g + 0.62 35 3 6.61 g + 0.82 13 4<br />

1 2<br />

: Collected eggs from the relay plot <strong>in</strong>cluded. : Survival <strong>in</strong> relay chicks only measured until chick age 9-<br />

11 days. 3 : Number <strong>of</strong> daily measurements varied between 38 <strong>and</strong> 28 chicks, 4 : Number <strong>of</strong> daily<br />

measurements varied between 15 <strong>and</strong> 9 chicks


Ibis Submitted Manuscript<br />

IBIS Review Copy<br />

Figure 1: Map <strong>of</strong> the archipelago Kitsissunnguit with field work location, Basis Ø. Inset<br />

map <strong>in</strong> the right upper corner <strong>in</strong>dicates location <strong>of</strong> Disko Bay.<br />

Page 26 <strong>of</strong> 26<br />

83


Manus IV<br />

FLUCTUATING BREEDING OF ARCTIC TERNS<br />

(STERNA PARADISAEA) IN ARCTIC AND<br />

HIGH-ARCTIC COLONIES IN GREENLAND<br />

Carsten Egevang 1 <strong>and</strong> Morten Frederiksen 2<br />

1 Greenl<strong>and</strong> Institute <strong>of</strong> Natural Resources<br />

Postbox 570, 3900 Nuuk, Greenl<strong>and</strong><br />

E-mail: cep@dmu.dk<br />

2 National Environmental Research Institute<br />

Aarhus University, Department <strong>of</strong> <strong>Arctic</strong> Environment<br />

Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark<br />

Manuscript submitted WATERBIRDS


86<br />

Fluctuat<strong>in</strong>g <strong>breed<strong>in</strong>g</strong> <strong>of</strong> <strong>Arctic</strong> Terns<br />

(Sterna paradisaea) <strong>in</strong> <strong>Arctic</strong> <strong>and</strong><br />

High-arctic colonies <strong>in</strong> Greenl<strong>and</strong><br />

CARSTEN EGEVANG 1 AND MORTEN FREDERIKSEN 2<br />

1Greenl<strong>and</strong> Institute <strong>of</strong> Natural Resources, Postbox 570, 3900 Nuuk, Greenl<strong>and</strong><br />

E-mail: cep@dmu.dk<br />

2 National Environmental Research Institute, Aarhus University, Department <strong>of</strong> <strong>Arctic</strong><br />

Environment, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark<br />

Abstract<br />

The <strong>Arctic</strong> Tern is regarded as a species show<strong>in</strong>g large variations <strong>in</strong> colony<br />

attendance between <strong>breed<strong>in</strong>g</strong> seasons. This makes comparable counts <strong>of</strong><br />

colony size complicated, <strong>and</strong> reliable population status estimates are diffi<br />

cult to obta<strong>in</strong>.<br />

In this study, three different areas <strong>in</strong> two different regions with <strong>breed<strong>in</strong>g</strong><br />

<strong>Arctic</strong> Terns were surveyed <strong>in</strong> consecutive <strong>breed<strong>in</strong>g</strong> seasons. Both small,<br />

mid <strong>and</strong> large sized colonies were surveyed over a four to fi ve year period<br />

<strong>in</strong> <strong>Arctic</strong> <strong>and</strong> High-arctic Greenl<strong>and</strong>. Colony size was estimated with simple<br />

direct counts or l<strong>in</strong>e transects to estimate nest density.<br />

A considerable between-year variation <strong>in</strong> population size was found <strong>in</strong><br />

the small <strong>and</strong> mid sized <strong>Arctic</strong> Tern colonies <strong>in</strong> Disko Bay, West Greenl<strong>and</strong><br />

(mean CV <strong>of</strong> <strong>in</strong>dividual colonies 117.5 %, CV <strong>of</strong> total 49.6 %). In the largest<br />

colony <strong>in</strong> Greenl<strong>and</strong>, Kitsissunnguit, overall colony size only showed<br />

m<strong>in</strong>or variations (CV 14.6 %), but variation <strong>in</strong> <strong>breed<strong>in</strong>g</strong> density was pronounced<br />

at sub-colony level (mean CV 47.4 %). When comb<strong>in</strong><strong>in</strong>g the surveyed<br />

colonies <strong>in</strong> Disko Bay, the total population size varied only little (CV<br />

6.7 %). This amount <strong>of</strong> variation was smaller than expected if colonies fl uctuated<br />

<strong>in</strong>dependently (P = 0.023), <strong>in</strong>dicat<strong>in</strong>g that local movements between<br />

the colonies took place <strong>and</strong> that annual variation was l<strong>in</strong>ked to local phenomena<br />

rather than to large-scale phenomena. At High-arctic S<strong>and</strong> Isl<strong>and</strong><br />

<strong>in</strong> Northeast Greenl<strong>and</strong>, <strong>Arctic</strong> Terns returned to the colony at the start <strong>of</strong><br />

each season, but complete <strong>breed<strong>in</strong>g</strong> failure, likely caused by the presence <strong>of</strong><br />

<strong>Arctic</strong> Fox <strong>in</strong> the colony, was recorded <strong>in</strong> two out <strong>of</strong> four seasons.<br />

Based on the results <strong>of</strong> this study, we recommend future Greenl<strong>and</strong> <strong>Arctic</strong><br />

Tern colony surveys to 1) survey multiple colonies with<strong>in</strong> the same season<br />

cover<strong>in</strong>g adjo<strong>in</strong><strong>in</strong>g colonies over a larger area, or 2) survey one large, representative<br />

colony <strong>in</strong> multiple years.<br />

Keywords: <strong>Arctic</strong> Tern, seabirds, survey methods, <strong>breed<strong>in</strong>g</strong>, Sterna paradisaea,<br />

<strong>Arctic</strong>, Greenl<strong>and</strong>.<br />

Runn<strong>in</strong>g head: <strong>Arctic</strong> Tern colonies <strong>in</strong> Greenl<strong>and</strong>


To obta<strong>in</strong> susta<strong>in</strong>able use <strong>of</strong> natural resources or to identify a need for<br />

conservation actions, wildlife managers around the world depend on reliable<br />

population status estimates. Whether ecosystem-based management<br />

or conservation issues <strong>of</strong> important natural sites are the focus, the assessment<br />

<strong>of</strong> population size development form counts is a key tool.<br />

Seabirds as a group are generally characterised by long life expectancy<br />

with a relatively small annual <strong>in</strong>vestment <strong>in</strong> reproductive outcome, <strong>of</strong>ten<br />

<strong>breed<strong>in</strong>g</strong> <strong>in</strong> large colonies with a high degree <strong>of</strong> site fi delity (Coulson 2002;<br />

Weimerskirch 2002). Colonial <strong>breed<strong>in</strong>g</strong> at predictable sites makes seabirds<br />

ideal for monitor<strong>in</strong>g <strong>and</strong> survey schemes, monitor<strong>in</strong>g not only the status<br />

<strong>of</strong> seabird populations, but also as <strong>in</strong>dicators for the state <strong>of</strong> the mar<strong>in</strong>e<br />

environment (Piatt et al. 2007; Parsons et al. 2008).<br />

<strong>Arctic</strong> Terns perform the longest known annual roundtrip migration <strong>in</strong><br />

any animal (Egevang et al. 2010) <strong>and</strong> are surface-feeders that plunge-dive<br />

or surface-dip for small fi sh or <strong>in</strong>vertebrates (Cramp 1985; Bianki <strong>and</strong> Isaksen<br />

2000; Hatch 2002). The <strong>Arctic</strong> Tern (Sterna paradisaea) usually breeds<br />

<strong>in</strong> l<strong>and</strong> predator-free environments, such as isl<strong>and</strong>s <strong>and</strong> skerries, <strong>and</strong> is<br />

particularly good at defend<strong>in</strong>g the colony aga<strong>in</strong>st avian predators. <strong>Arctic</strong><br />

Tern <strong>breed<strong>in</strong>g</strong> ground requirements are simple <strong>and</strong> the nest, with one, two<br />

or more rarely three eggs, is placed on the ground <strong>in</strong> a large variety <strong>of</strong><br />

substrates <strong>and</strong> habitats. The annual reproductive outcome <strong>of</strong> <strong>Arctic</strong> Terns<br />

fl uctuates widely, with <strong>breed<strong>in</strong>g</strong> failure over large areas reported (Avery et<br />

al. 1992; Boertmann et al. 1996). Furthermore, colony desertion with<strong>in</strong> the<br />

<strong>breed<strong>in</strong>g</strong> season <strong>and</strong> high chick mortality from starvation (Monaghan et<br />

al. 1989; Monaghan et al. 1992; Suddaby <strong>and</strong> Ratcliffe 1997) seem to occur<br />

on a more regular basis than <strong>in</strong> most other seabirds.<br />

Although site fi delity at a regional level is high <strong>in</strong> nest<strong>in</strong>g <strong>Arctic</strong> Terns,<br />

dispersal to neighbour<strong>in</strong>g <strong>breed<strong>in</strong>g</strong> colonies occurs frequently (Devl<strong>in</strong> et<br />

al. 2008, Møller et al. 2006, Br<strong>in</strong>dley et al. 1999, Ratcliffe 2004). This means<br />

that large variation <strong>in</strong> colony attendance between seasons is observed at<br />

some <strong>Arctic</strong> Tern colonies. Although poorly understood, it is important to<br />

address whether these variations may be caused by locally occurr<strong>in</strong>g phenomena,<br />

such as predation <strong>and</strong> disturbance, or whether they are l<strong>in</strong>ked to<br />

large-scale events such as food shortage l<strong>in</strong>ked to e.g. climatic variations.<br />

When <strong>in</strong>terpret<strong>in</strong>g counts <strong>of</strong> <strong>Arctic</strong> Tern colonies where variation occurs,<br />

it is furthermore important to address the scale (from with<strong>in</strong>-colony to<br />

regional scale) at which the variations <strong>in</strong> colony attendance occur.<br />

A comb<strong>in</strong>ation <strong>of</strong> these factors makes it particularly diffi cult to address<br />

population size, population status <strong>and</strong> trends <strong>in</strong> <strong>Arctic</strong> Terns (Ratcliffe<br />

2004). This is specifi cally the case <strong>in</strong> the <strong>Arctic</strong> zone where <strong>breed<strong>in</strong>g</strong> sites<br />

may be diffi cult to access <strong>and</strong> colonies can be far apart.<br />

In Greenl<strong>and</strong>, the <strong>Arctic</strong> Tern is a widespread breeder with its core distribution<br />

<strong>in</strong> West Greenl<strong>and</strong> between 68º <strong>and</strong> 74º N (Boertmann et al.<br />

1996; Egevang <strong>and</strong> Boertmann 2003). Although no systematic monitor<strong>in</strong>g<br />

schedule <strong>of</strong> <strong>Arctic</strong> Tern colonies has been <strong>in</strong>itiated <strong>in</strong> Greenl<strong>and</strong>, opportunistic<br />

counts dur<strong>in</strong>g the last fi ve to six decades <strong>in</strong>dicate a decl<strong>in</strong>e<br />

<strong>in</strong> the population (Salomonsen 1950; Egevang et al. 2004; Burnham et al.<br />

2005). This decl<strong>in</strong>e is assumed to be l<strong>in</strong>ked to non-susta<strong>in</strong>able egg harvest<strong>in</strong>g,<br />

which has been a popular recreative activity carried out by local<br />

family groups. <strong>Arctic</strong> Tern egg harvest<strong>in</strong>g was <strong>of</strong>fi cially banned <strong>in</strong> 2002,<br />

<strong>and</strong> although some illegal harvest<strong>in</strong>g still takes place <strong>in</strong> the Disko Bay<br />

87


88<br />

area, the magnitude <strong>of</strong> tern egg harvest<strong>in</strong>g seems to have decreased markedly<br />

(own observations). Due to the lack <strong>of</strong> systematic counts, fl uctuations<br />

<strong>in</strong> colony size are poorly documented <strong>in</strong> Greenl<strong>and</strong>, although years with<br />

non-<strong>breed<strong>in</strong>g</strong> <strong>and</strong> <strong>breed<strong>in</strong>g</strong> failure have been noted by several authors<br />

(Salomonsen 1950, Boertmann et al. 1996, Levermann <strong>and</strong> Tøttrup 2007,<br />

GSCD 2009). Although <strong>breed<strong>in</strong>g</strong> failure (1992 – the summer follow<strong>in</strong>g the<br />

Mount P<strong>in</strong>atubo eruption) over a large scale has been documented on one<br />

occasion <strong>in</strong> Greenl<strong>and</strong> (Boertmann et al. 1996), the scale <strong>and</strong> reasons for<br />

fl uctuat<strong>in</strong>g <strong>breed<strong>in</strong>g</strong> are largely undocumented.<br />

In this paper we present the results <strong>of</strong> <strong>Arctic</strong> Tern colony surveys from<br />

four to fi ve consecutive seasons conducted <strong>in</strong> both small, mid <strong>and</strong> large<br />

sized colonies <strong>in</strong> two different regions <strong>of</strong> Greenl<strong>and</strong>. In conclusion, a<br />

number <strong>of</strong> recommendations for future monitor<strong>in</strong>g <strong>of</strong> <strong>Arctic</strong> Tern colonies<br />

<strong>in</strong> Greenl<strong>and</strong> are listed.<br />

METHODS<br />

Study area<br />

<strong>Arctic</strong> Tern surveys were conducted <strong>in</strong> three study areas located <strong>in</strong> two<br />

different regions <strong>and</strong> climate zones <strong>of</strong> Greenl<strong>and</strong>.<br />

1. Kitsissunnguit (Grønne Ejl<strong>and</strong>) is located <strong>in</strong> the southern part <strong>of</strong> Disko<br />

Bay, West Greenl<strong>and</strong> (68.85º N, 52.00º W). The site consists <strong>of</strong> four major<br />

isl<strong>and</strong>s (size: 0.44-3.55 km 2 ) <strong>and</strong> many islets <strong>and</strong> skerries (Fig. 1A). Kitsissunnguit<br />

holds the largest <strong>Arctic</strong> Tern colony <strong>in</strong> Greenl<strong>and</strong> <strong>and</strong> probably<br />

one <strong>of</strong> the largest <strong>in</strong> the World (Cramp 1985, Bianki <strong>and</strong> Isaksen<br />

2000, Hatch 2002). The archipelago furthermore holds large diversity<br />

(by <strong>Arctic</strong> st<strong>and</strong>ards) <strong>and</strong> high densities <strong>of</strong> other <strong>breed<strong>in</strong>g</strong> waterbirds,<br />

likely a result <strong>of</strong> <strong>breed<strong>in</strong>g</strong> association between <strong>Arctic</strong> Terns <strong>and</strong> other<br />

waterbirds (Egevang et al. 2004; Jørgensen et al. 2007; Egevang <strong>and</strong> Boertmann<br />

2008). The coast <strong>of</strong> Kitsissunnguit is mostly rocky, whereas the<br />

<strong>in</strong>terior is made up <strong>of</strong> large consecutive areas covered by dwarf scrub<br />

heath with Crowberry (Empetrum nigrum) <strong>and</strong> mosses (Bryophyta) as<br />

the dom<strong>in</strong>ant species.<br />

2. The “Akunnaaq area” is located <strong>in</strong> the southern part <strong>of</strong> Disko Bay,<br />

West Greenl<strong>and</strong> (approximately 20 km southwest <strong>of</strong> Kitsissunnguit)<br />

between the town Aasiaat <strong>and</strong> the settlement <strong>of</strong> Akunnaaq (68.72-<br />

68.80º N, 52.20-52.73º W). The study area consists <strong>of</strong> numerous skerries<br />

<strong>and</strong> small isl<strong>and</strong>s (Fig. 1A), <strong>of</strong> which many hold <strong>breed<strong>in</strong>g</strong> <strong>Arctic</strong> Terns.<br />

Fourteen colonies on islets between 0.002 <strong>and</strong> 0.2 km 2 <strong>in</strong> size (Tab. 1,<br />

Fig 1A) were counted annually between 2002 <strong>and</strong> 2005. The colonies<br />

were all low-ly<strong>in</strong>g with rocky coasts <strong>and</strong> dwarf bush heath found <strong>in</strong> the<br />

central parts <strong>of</strong> islets.<br />

3. S<strong>and</strong> Isl<strong>and</strong> (S<strong>and</strong>øen) is located with<strong>in</strong> the high-arctic zone <strong>of</strong> Northeast<br />

Greenl<strong>and</strong>, at the mouth <strong>of</strong> Young Sound (74.26º N, 20.16º W, Fig.<br />

1B). The small isl<strong>and</strong> (0.22 km 2 ) peaks at only three meters above sea<br />

level, with a habitat consist<strong>in</strong>g <strong>of</strong> mostly s<strong>and</strong> <strong>and</strong> gravel with vegetation<br />

be<strong>in</strong>g extremely sparse. The surround<strong>in</strong>gs <strong>of</strong> the isl<strong>and</strong> are highly<br />

<strong>in</strong>fl uenced by sea ice. Break-up <strong>of</strong> the ice-covered fjord occurs <strong>in</strong> early<br />

July, but drift ice <strong>in</strong> vary<strong>in</strong>g amounts may be present throughout the<br />

<strong>breed<strong>in</strong>g</strong> season.


Figure 1. Map <strong>of</strong> study areas. Inset map <strong>in</strong> upper left corner shows the location <strong>of</strong> A) Kitsissunnguit <strong>and</strong> the Akunnaaq Area <strong>in</strong><br />

Disko Bay <strong>and</strong> B) <strong>of</strong> S<strong>and</strong> Isl<strong>and</strong> <strong>in</strong> Northeast Greenl<strong>and</strong>. The map scale (lower right corner) applies to both A <strong>and</strong> B.<br />

Table 1. Colony size (<strong>in</strong>dividuals) at 14 <strong>Arctic</strong> Tern colonies <strong>in</strong> the southern part <strong>of</strong> Disko Bay <strong>in</strong> 2002-2005. Colony code refers<br />

to the Greenl<strong>and</strong> Seabird Colony Database (GSCD 2009). Asterisk (*) <strong>in</strong>dicates “dog isl<strong>and</strong>s” – sites where sledge dogs are located<br />

through the summer.<br />

Colony code 2002 (18 June) 2003 (17 June) 2004 (19 June) 2005 (18 June) CV 2002 to 2005 (%)<br />

68013 2,000 0 650 1,800 85.4<br />

68142 10 30 0 0 141.4<br />

68155 600 0 600 1,050 76.6<br />

68166 30 0 0* 12 135.0<br />

68167 1,000 0 520 330 90.3<br />

68174 80 0 40 200 108.0<br />

68175 0* 0 0 0* –<br />

68188 30 0 0 650 188.4<br />

68189 55 0 260 0 156.9<br />

68190 300 0 400 50 103.0<br />

68191 200 0 140 400 89.7<br />

68192 100 0 1,000 300 128.8<br />

68193 300 0 0 100 141.4<br />

68194 0 1,200 430 950 83.2<br />

Total 4,705 1,230 4,040 5,842 49.6<br />

89


90<br />

Both Kitsissunnguit <strong>and</strong> the Akunnaaq area are situated with<strong>in</strong> the core<br />

distribution area for <strong>Arctic</strong> Tern <strong>in</strong> Greenl<strong>and</strong>, <strong>and</strong> neighbour<strong>in</strong>g <strong>Arctic</strong><br />

Tern colonies (not <strong>in</strong>cluded <strong>in</strong> neither <strong>of</strong> the study sites) are few kilometres<br />

away. In contrast, S<strong>and</strong> Isl<strong>and</strong> is more isolated <strong>and</strong> the nearest tern<br />

colony is more than 50 km away.<br />

Predators at all three study areas <strong>in</strong>cluded <strong>Arctic</strong> Fox (Alopex lagopus), Glaucous<br />

Gull (Larus hyperboreus), Great Black-backed Gull (L. mar<strong>in</strong>us), Common<br />

Raven (Corvus corax), Peregr<strong>in</strong>e Falcon (Falco peregr<strong>in</strong>us), Gyrfalcon<br />

(Falco rusticolus) <strong>and</strong> occasionally Lesser Black-backed Gull (L. fuscus), Parasitic<br />

Jaeger (Stercorarius parasiticus) <strong>and</strong> Long-tailed Jaeger (S. longicaudus).<br />

Methods<br />

Due to differences <strong>in</strong> colony area <strong>and</strong> population size at the study sites<br />

two different methods were applied when estimat<strong>in</strong>g population size.<br />

1. The high number <strong>of</strong> <strong>breed<strong>in</strong>g</strong> birds comb<strong>in</strong>ed with the fact that <strong>terns</strong><br />

at Kitsissunnguit breed scattered over a large consecutive area called<br />

for special census methods. L<strong>in</strong>e transects (Buckl<strong>and</strong> et al. 2001) record<strong>in</strong>g<br />

the nest <strong>of</strong> <strong>Arctic</strong> Terns were applied on the major isl<strong>and</strong>s. Northsouth<br />

oriented l<strong>in</strong>es 250 m apart were used <strong>in</strong> the fi eld with data subsequently<br />

analysed us<strong>in</strong>g the s<strong>of</strong>tware Distance ver. 5.0 (Thomas et al.<br />

2006). Counts were always conducted by two persons: an observer <strong>and</strong><br />

a navigator. The observer would walk along a transect l<strong>in</strong>e at an equal<br />

pace, search<strong>in</strong>g for nests <strong>and</strong> measur<strong>in</strong>g the distance between the nest<br />

<strong>and</strong> the transect l<strong>in</strong>e with a measur<strong>in</strong>g tape. The navigator would walk<br />

approximately 15 meters beh<strong>in</strong>d the observer <strong>and</strong> us<strong>in</strong>g a GPS direct<strong>in</strong>g<br />

the observer to stay on the l<strong>in</strong>e. The l<strong>in</strong>e transect counts were conducted<br />

between 18 June <strong>and</strong> 3 July <strong>in</strong> 2002 -2006 at a time <strong>in</strong> the <strong>breed<strong>in</strong>g</strong><br />

cycle when the majority <strong>of</strong> the colony had stopped lay<strong>in</strong>g eggs but<br />

prior to the start <strong>of</strong> hatch<strong>in</strong>g.<br />

2. Direct counts were applied at the Akunnaaq area <strong>and</strong> at S<strong>and</strong> Isl<strong>and</strong>. We<br />

used fl ush counts to estimate colony size, <strong>and</strong> the number <strong>of</strong> birds present<br />

at the colony was transformed <strong>in</strong>to <strong>breed<strong>in</strong>g</strong> pairs by divid<strong>in</strong>g with a<br />

factor <strong>of</strong> 1.5 (Bullock <strong>and</strong> Gomersall 1981). The colonies were located on<br />

small isl<strong>and</strong>s that could be surveyed from the sea, <strong>and</strong> counts were performed<br />

with a boat as platform. The counts <strong>in</strong> the Akunnaaq area were<br />

conducted with<strong>in</strong> a narrow time w<strong>in</strong>dow (17-19 June), which correspond<br />

to mid <strong>in</strong>cubation (Table 1). Roost<strong>in</strong>g <strong>terns</strong> (i.e. larger fl ocks aggregated at<br />

the shorel<strong>in</strong>e) were ignored <strong>in</strong> the population size estimate. Isl<strong>and</strong>s with<br />

sledge dogs (“dog isl<strong>and</strong>s”) were recorded on the same occasion.<br />

Counts at S<strong>and</strong> Isl<strong>and</strong> were conducted between 20 <strong>and</strong> 26 July (mid-late<br />

<strong>in</strong>cubation). The isl<strong>and</strong> was divided <strong>in</strong>to segments that were counted<br />

(fl ush counts) separately by walk<strong>in</strong>g through the colony on foot.<br />

We used permutation tests to evaluate whether regional annual total nest<br />

counts were less variable than expected if colonies fl uctuated <strong>in</strong>dependently,<br />

which would <strong>in</strong>dicate between-colony movements. With<strong>in</strong> each<br />

colony, annual counts were permuted r<strong>and</strong>omly 9,999 times, simulated<br />

regional annual totals <strong>and</strong> their variance (or equivalently CV) were calculated,<br />

<strong>and</strong> a one-tailed P value determ<strong>in</strong>ed as the proportion <strong>of</strong> simulated<br />

totals hav<strong>in</strong>g lower variance than the observed regional annual totals.


RESULTS<br />

The overall population size at Kitsissunnguit (all isl<strong>and</strong>s comb<strong>in</strong>ed)<br />

showed little variation (CV=13.9 %) between ye ars with a population size<br />

between 15,400–21,800 pairs <strong>in</strong> 2002-2006 (Table 2, details <strong>in</strong> Appendix I).<br />

However, at <strong>in</strong>dividual isl<strong>and</strong>s a more pronounced variation (Tab. 2) was<br />

recorded with differences <strong>of</strong> almost a factor three <strong>in</strong> <strong>breed<strong>in</strong>g</strong> population<br />

(e.g. Niaqornaq 2002 vs. 2003). Furthermore, the isl<strong>and</strong> Innarsuatsiaaq<br />

showed two years without <strong>terns</strong> followed by two years with low densities<br />

<strong>of</strong> <strong>breed<strong>in</strong>g</strong> <strong>terns</strong>. The <strong>breed<strong>in</strong>g</strong> density at Kitsissunnguit (all years <strong>and</strong> all<br />

isl<strong>and</strong>s comb<strong>in</strong>ed) averaged 4,823 pairs/km 2 (+1,483). At a smaller scale<br />

(compar<strong>in</strong>g between the isl<strong>and</strong>s), <strong>breed<strong>in</strong>g</strong> densities varied between 7,213<br />

<strong>and</strong> 629 pairs/km 2 (Appendix I).<br />

The fourteen colonies <strong>in</strong> the Akunnaaq area showed considerable differences<br />

<strong>in</strong> population size between years, with coeffi cient <strong>of</strong> variation<br />

rang<strong>in</strong>g from 76.6 % to 188.4 % (Table 1), whereas CV <strong>of</strong> the colonies comb<strong>in</strong>ed<br />

was lower at 49.6 %. Only one site (68175) did not <strong>in</strong>clude <strong>breed<strong>in</strong>g</strong><br />

<strong>terns</strong> <strong>in</strong> any <strong>of</strong> the surveyed years, whereas the other thirteen colonies<br />

had <strong>breed<strong>in</strong>g</strong> <strong>terns</strong> <strong>in</strong> at least two <strong>of</strong> surveyed years. All <strong>of</strong> the colonies<br />

experienced years without <strong>breed<strong>in</strong>g</strong> <strong>terns</strong> (most <strong>of</strong> them <strong>in</strong> 2003), <strong>and</strong> the<br />

largest absolute variation <strong>in</strong> colony size was found <strong>in</strong> the largest colony<br />

(68013), rang<strong>in</strong>g from 0 to 2,000 <strong>in</strong>dividuals (Tab. 1). When ignor<strong>in</strong>g years<br />

without <strong>breed<strong>in</strong>g</strong> <strong>terns</strong> (0-years) the average difference <strong>in</strong> maximum <strong>and</strong><br />

m<strong>in</strong>imum <strong>in</strong>dividuals <strong>in</strong> the colonies were 372 (SD = 387) with two colonies<br />

vary<strong>in</strong>g by as much as a factor 10 (68192) or 20 (68188) between years.<br />

The permutation test showed no evidence <strong>of</strong> lower regional variation<br />

with<strong>in</strong> each <strong>of</strong> the two regions (Kitsissunnguit P = 0.20, Akunnaaq P = 0.90),<br />

but when the two regions were pooled to form an overall Disko Bay total,<br />

variance <strong>and</strong> thus CV were lower than expected if <strong>in</strong>dividual colonies<br />

fl uctuated <strong>in</strong>dependently (P = 0.023).<br />

At S<strong>and</strong> Isl<strong>and</strong>, variation <strong>in</strong> <strong>breed<strong>in</strong>g</strong> numbers was more pronounced.<br />

Both 2006 <strong>and</strong> 2009 were years with total <strong>breed<strong>in</strong>g</strong> failures, whereas the<br />

<strong>breed<strong>in</strong>g</strong> population <strong>in</strong> 2007 <strong>and</strong> 2008 was estimated at between 700 <strong>and</strong><br />

1000 pairs, based on counts vary<strong>in</strong>g between 1150 <strong>and</strong> 1500 <strong>in</strong>dividuals.<br />

In the two years with <strong>breed<strong>in</strong>g</strong> failure, birds returned to the colony at the<br />

start <strong>of</strong> the season, but egg-lay<strong>in</strong>g was either postponed or laid eggs depredated,<br />

until <strong>breed<strong>in</strong>g</strong> was eventually ab<strong>and</strong>oned.<br />

Table 2. <strong>Arctic</strong> Tern population size (pairs) at Kitsissunnguit (Grønne Ejl<strong>and</strong>) <strong>in</strong> 2002-2006. Population size was estimated us<strong>in</strong>g<br />

l<strong>in</strong>e transects. Details on estimates are found <strong>in</strong> Appendix I.<br />

2002 2003 2004 2005 2006 CV 2002-2005 (%) CV 2002-2006 (%)<br />

Angissat 0 0 0 0 0 – –<br />

Innarsuatsiaaq 0 0 776 6001 8001 68.7 93.0<br />

Basis Ø 11,525 17,626 15,901 12,112 17,060 15.8 19.1<br />

Niaqornaq 3,159 1,245 1,984 2,346 2,5001 27.7 31.3<br />

Saattuarsuit 6701 6701 5301 1,4201 1,4001 46.9 46.3<br />

Total 15,354 19,541 19,191 16,478 21,760 11.6 13.9<br />

1Estimate from direct counts<br />

91


92<br />

Although the <strong>breed<strong>in</strong>g</strong> numbers <strong>in</strong> 2007 <strong>and</strong> 2008 were similar, the distribution<br />

<strong>of</strong> tern nests differed between the two seasons. In 2007 birds bred<br />

scattered over most <strong>of</strong> the isl<strong>and</strong>, whereas <strong>in</strong> 2008 the majority (estimated<br />

80%) <strong>of</strong> the <strong>terns</strong> bred at the elevated central part <strong>of</strong> the isl<strong>and</strong> (Egevang<br />

& Stenhouse 2008, Egevang et al. 2009). In 2007/2008 the <strong>breed<strong>in</strong>g</strong> density<br />

equalled 2,574-3,676 pairs per km 2 on S<strong>and</strong> Isl<strong>and</strong>.<br />

DISCUSSION<br />

The <strong>in</strong>formation obta<strong>in</strong>ed from compar<strong>in</strong>g surveys <strong>in</strong> this study shows<br />

that a high degree <strong>of</strong> variation <strong>in</strong> population size between years. The highest<br />

coeffi cient <strong>of</strong> variation was found at colony level, whereas lower variation<br />

was found for the two study areas, Kitsissunnguit <strong>and</strong> the Akunnaaq<br />

Area (Tab. 1 <strong>and</strong> 2). When comb<strong>in</strong><strong>in</strong>g the two study areas, which <strong>in</strong>clude<br />

more than 80 % (GSCD 2009) <strong>of</strong> the <strong>Arctic</strong> Tern population <strong>in</strong> Disko Bay,<br />

to address annual population size variations at a large scale, a CV <strong>of</strong> only<br />

6.7% was found with the gr<strong>and</strong> total rang<strong>in</strong>g between 20,000 <strong>and</strong> 23,000<br />

pairs (Tab. 3), a level <strong>of</strong> variation that was smaller than expected if colonies<br />

fl uctuated <strong>in</strong>dependently. This led us to conclude that year-to-year<br />

variation <strong>in</strong> the <strong>Arctic</strong> Tern population <strong>in</strong> Disko Bay is not governed by<br />

large scale phenomena. Instead, the switch<strong>in</strong>g <strong>of</strong> colonies between seasons<br />

is more likely driven by more locally occurr<strong>in</strong>g phenomena, such as<br />

predation or disturbance. However, <strong>in</strong> 2003 it seems likely that mesoscale<br />

movements from the southern colonies (Akunnaaq area) to Kitsissunnguit<br />

may have taken place.<br />

Variation was also found among colonies <strong>in</strong> the distribution <strong>and</strong> density<br />

<strong>of</strong> the <strong>breed<strong>in</strong>g</strong> birds. The highest <strong>and</strong> most pronounced variation was<br />

found amongst the smaller <strong>and</strong> midsized colonies <strong>in</strong> the Akunnaaq area.<br />

Here colonies with up to 2,000 <strong>breed<strong>in</strong>g</strong> <strong>in</strong>dividuals one year could be<br />

followed by years without or with very few pairs <strong>breed<strong>in</strong>g</strong>. However,<br />

tern colonies are located densely <strong>in</strong> the southern part <strong>of</strong> Disko Bay, <strong>and</strong> it<br />

is likely that the local <strong>terns</strong> may shift between suitable nest<strong>in</strong>g grounds.<br />

Even <strong>in</strong> 2003, which seemed to be a poor overall <strong>breed<strong>in</strong>g</strong> season <strong>in</strong> the<br />

Akunnaaq area, a site (Pullat, code 68148) less than 10 km outside the<br />

Akunnaaq study area held 3,000 <strong>breed<strong>in</strong>g</strong> <strong>Arctic</strong> Terns. Although direct<br />

evidence that the same <strong>in</strong>dividuals move around between colonies from<br />

year to year <strong>in</strong> the (southern) Disko Bay area is diffi cult to obta<strong>in</strong>, the<br />

circumstantial evidence <strong>of</strong> this study <strong>in</strong>dicates that this is <strong>in</strong> fact the case.<br />

At the high-arctic S<strong>and</strong> Isl<strong>and</strong>, the short summer leaves only a brief w<strong>in</strong>dow<br />

<strong>of</strong> opportunity for complet<strong>in</strong>g the <strong>breed<strong>in</strong>g</strong> cycle. The four years <strong>of</strong><br />

data <strong>in</strong>cluded <strong>in</strong> this study <strong>in</strong>dicate that complete <strong>breed<strong>in</strong>g</strong> failure takes<br />

place at a regular basis (two out <strong>of</strong> four seasons). When the birds arrive to<br />

breed between late June <strong>and</strong> early July, sea ice still covers the surround<strong>in</strong>gs<br />

<strong>of</strong> the isl<strong>and</strong> connect<strong>in</strong>g it with the ma<strong>in</strong>l<strong>and</strong>. From here, <strong>Arctic</strong> Foxes are<br />

able to access the isl<strong>and</strong> <strong>and</strong> cause considerable nest predation. The time<br />

for ice break-up <strong>and</strong> isolation <strong>of</strong> the isl<strong>and</strong> from l<strong>and</strong> predators may vary<br />

between years, but usually takes place <strong>in</strong> early July (ZERO 1997-2009).<br />

The presence <strong>of</strong> a predator on the isl<strong>and</strong> <strong>in</strong> egg–lay<strong>in</strong>g period seemed to<br />

make the birds postpone their egg lay<strong>in</strong>g, as suggested by Levermann<br />

<strong>and</strong> Tøttrup (2007), or more likely to postpone the decision <strong>of</strong> <strong>in</strong>vest<strong>in</strong>g <strong>in</strong><br />

a replacement clutch after hav<strong>in</strong>g the fi rst clutch depredated early <strong>in</strong> the<br />

season.


Table 3. Gr<strong>and</strong> total (from table 1 <strong>and</strong> 2) <strong>and</strong> coeffi cient <strong>of</strong> variation (CV) from <strong>Arctic</strong> colony<br />

censuses <strong>in</strong> Disko Bay 2002-2005.<br />

The fl uctuat<strong>in</strong>g occurrence <strong>of</strong> <strong>Arctic</strong> Terns between <strong>breed<strong>in</strong>g</strong> seasons<br />

stressed by this study clearly emphasises the need for a specialized monitor<strong>in</strong>g<br />

programme for this species. Monitor<strong>in</strong>g <strong>of</strong> <strong>Arctic</strong> Terns <strong>in</strong> s<strong>in</strong>gle<br />

colonies conducted <strong>in</strong> s<strong>in</strong>gle years does not provide a reliable estimate <strong>of</strong><br />

the population status, as <strong>Arctic</strong> Terns show a lesser degree <strong>of</strong> site fi delity<br />

compared with most other <strong>Arctic</strong> seabird species. The use <strong>of</strong> counts<br />

<strong>of</strong> <strong>breed<strong>in</strong>g</strong> birds or nests <strong>in</strong> fi xed study plots for later extrapolation is<br />

furthermore questionable, as with<strong>in</strong>-colony movements <strong>of</strong> the location <strong>of</strong><br />

nest along with variation <strong>in</strong> <strong>breed<strong>in</strong>g</strong> density between years seems to occur<br />

at a regular basis.<br />

Future monitor<strong>in</strong>g <strong>of</strong> <strong>Arctic</strong> Tern populations <strong>in</strong> Greenl<strong>and</strong> is recommended<br />

to apply one <strong>of</strong> the follow<strong>in</strong>g two approaches (or ideally a comb<strong>in</strong>ation<br />

<strong>of</strong> both): 1) Survey <strong>of</strong> multiple colonies with<strong>in</strong> the same season cover<strong>in</strong>g<br />

adjo<strong>in</strong><strong>in</strong>g colonies over a larger area, or 2) survey <strong>of</strong> one large, representative<br />

colony <strong>in</strong> multiple years. However, s<strong>in</strong>ce logistics <strong>in</strong> Greenl<strong>and</strong> are<br />

both expensive <strong>and</strong> time consum<strong>in</strong>g, the fi rst approach seems most cost<br />

effective <strong>and</strong> likely to produce a suitable estimate for manag<strong>in</strong>g purposes.<br />

In terms <strong>of</strong> the survey method, this will probably be determ<strong>in</strong>ed by the<br />

size, structure <strong>and</strong> <strong>breed<strong>in</strong>g</strong> density <strong>of</strong> the colony. Smaller <strong>and</strong> mid-sized<br />

colonies up to 2,000 birds <strong>breed<strong>in</strong>g</strong> on skerries <strong>and</strong> islets that can be<br />

surveyed from the sea are best counted us<strong>in</strong>g a boat as platform. Large<br />

colonies with higher number <strong>of</strong> birds are recommended to be surveyed<br />

by counts <strong>in</strong> subdivisions <strong>of</strong> the colony (preferably delimited by easily<br />

recognisable, natural boundaries <strong>in</strong> the fi eld). Large colonies with high<br />

<strong>breed<strong>in</strong>g</strong> numbers <strong>and</strong> nests evenly distributed at low or medium densities<br />

should be surveyed us<strong>in</strong>g l<strong>in</strong>e transects or a similar approach.<br />

The period for conduct<strong>in</strong>g surveys should be timed to co<strong>in</strong>cide with late<br />

<strong>in</strong>cubation. As tim<strong>in</strong>g <strong>of</strong> egg lay<strong>in</strong>g may vary considerably between seasons<br />

<strong>and</strong> locations, it is important to address the state <strong>of</strong> the <strong>breed<strong>in</strong>g</strong><br />

cycle before conduct<strong>in</strong>g the counts. This is particularly the case for l<strong>in</strong>e<br />

transects, where record<strong>in</strong>g <strong>of</strong> tern nests need to be conducted when the<br />

majority <strong>of</strong> the birds have started <strong>in</strong>cubation but before eggs starts hatch<strong>in</strong>g<br />

<strong>and</strong> chicks can move away from the nest area.<br />

ACKNOWLEDGEMENTS<br />

2002 2003 2004 2005 CV (%)<br />

Kitsissunnguit 15,354 19,541 19,191 16,478 11.6<br />

Akunnaaq area 4,705 1,230 4,040 5,842 49.6<br />

Gr<strong>and</strong> Total 20,059 20,771 23,231 22,320 6.7<br />

The fi eldwork was fi nancially supported by the Danish Energy Agency<br />

(the climate support program to the <strong>Arctic</strong>) <strong>and</strong> the Commission for Scientifi<br />

c Research <strong>in</strong> Greenl<strong>and</strong> (KVUG). Special thanks go to the people who<br />

assisted <strong>in</strong> the fi eld over the years: David Boertmann <strong>and</strong> Morten Bjerrum<br />

(National Environmental Research Institute, Denmark), Anders Tøttrup,<br />

Mikkel Willemoes <strong>and</strong> Peter S. Jørgensen (University <strong>of</strong> Copenhagen),<br />

93


94<br />

Ole S. Kristensen, Lars Witt<strong>in</strong>g <strong>and</strong> Rasmus Lauridsen (GNIR), Bjarne Petersen,<br />

Qasigiannguit <strong>and</strong> Norman Ratcliffe <strong>and</strong> Stuart Benn (Royal Society<br />

for Protection <strong>of</strong> Birds). Also thanks to F<strong>in</strong>n Steffens (Qeqertarsuaq)<br />

<strong>and</strong> Elektriker-it (Aasiaat) for logistic support.<br />

LITERATURE CITED<br />

Avery, M.I., D. Suddaby, P.M. Ellis <strong>and</strong> I.M. W. Sim. 1992. Exceptionally low bodyweights<br />

<strong>of</strong> <strong>Arctic</strong> Terns Sterna paradisaea on Shetl<strong>and</strong>. Ibis 134: 87-88.<br />

Bianki, V.V. <strong>and</strong> K. Isaksen. 2000. <strong>Arctic</strong> Tern Sterna paradisaea. In The status <strong>of</strong> mar<strong>in</strong>e<br />

birds <strong>breed<strong>in</strong>g</strong> <strong>in</strong> the Barents Sea region. Anker-Nilssen. T. et al. Tromsø, Norsk<br />

Polar<strong>in</strong>stitutt Rapportserie. 113: 131-136.<br />

Boertmann, D., A. Mosbech, K. Falk <strong>and</strong> K. Kampp. 1996. Seabird colonies <strong>in</strong> western<br />

Greenl<strong>and</strong> (60 º– 79º 30’ N lat.). National Environmental Research Institute, Denmark.<br />

Technical Report 170, NERI, Roskilde.<br />

Br<strong>in</strong>dley E., G. Mudge, N. Dymond, C. Lodge, B. Ribb<strong>and</strong>s, D. Steele, P. Ellis, E.<br />

Meek, D. Suddaby <strong>and</strong> N. Ratcliffe. 1999. The status <strong>of</strong> <strong>Arctic</strong> Terns Sterna paradisaea<br />

at Shetl<strong>and</strong> <strong>and</strong> Orkney <strong>in</strong> 1994. Atlantic Seabirds 1, 135-143.<br />

Buckl<strong>and</strong>, S.T., D.R. Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers <strong>and</strong> L. Thomas.<br />

2001. Introduction to Distance Sampl<strong>in</strong>g - Estimat<strong>in</strong>g abundance <strong>of</strong> biological<br />

populations. Oxford, Oxford University Press.<br />

Bullock, I.D. <strong>and</strong> C.H. Gomersall. 1981. The <strong>breed<strong>in</strong>g</strong> population <strong>of</strong> <strong>terns</strong> <strong>in</strong> Orkney<br />

<strong>and</strong> Shetl<strong>and</strong> <strong>in</strong> 1980. Bird Study 28: 187-200.<br />

Burnham, W., K.K. Burnham <strong>and</strong> T.J. Cade. 2005. Past <strong>and</strong> present assessments <strong>of</strong><br />

bird life <strong>in</strong> Uummannaq District, West Greenl<strong>and</strong>. Dansk Ornitologisk Foren<strong>in</strong>gs<br />

Tidsskrift 99: 196-208.<br />

Coulson, J.C. 2002. Colonial <strong>breed<strong>in</strong>g</strong> <strong>in</strong> seabirds Biology <strong>of</strong> Mar<strong>in</strong>e Birds. E.A.<br />

Schreiber <strong>and</strong> J. Burger. New York, CRC Press: 87-113.<br />

Cramp, S., Ed. 1985. Terns to woodpeckers. Birds <strong>of</strong> the Western Palearctic. Oxford,<br />

Oxford University Press.<br />

Devl<strong>in</strong>, C.M., A.W. Diamond, S.W. Kress, C.S. Hall <strong>and</strong> L. Welch. 2008. Breed<strong>in</strong>g<br />

Dispersal <strong>and</strong> Survival <strong>of</strong> <strong>Arctic</strong> Terns (Sterna paradisaea) Nest<strong>in</strong>g <strong>in</strong> the Gulf <strong>of</strong><br />

Ma<strong>in</strong>e. The Auk 125, 850-858.<br />

Egevang, C. <strong>and</strong> D. Boertmann. 2003. Havternen i Grønl<strong>and</strong> – Status og undersøgelse<br />

2002. National Environmental Research Institute, Denmark. Technical Report 438,<br />

NERI, Roskilde.<br />

Egevang, C. <strong>and</strong> D. Boertmann. 2008. Ross’s Gulls (Rhodostethia rosea) Breed<strong>in</strong>g <strong>in</strong><br />

Greenl<strong>and</strong>: A Review, with Special Emphasis on Records from 1979 to 2007. <strong>Arctic</strong><br />

61(3): 322-328.<br />

Egevang, C., K. Kampp <strong>and</strong> D. Boertmann. 2004. The Breed<strong>in</strong>g Association <strong>of</strong> Red<br />

Phalaropes (Phalaropus fulicarius) with <strong>Arctic</strong> Terns (Sterna paradisaea): Response to<br />

a Redistribution <strong>of</strong> Terns <strong>in</strong> a Major Greenl<strong>and</strong> Colony. Waterbirds 27(4): 406-410.<br />

Egevang, C. <strong>and</strong> I.J. Stenhouse. 2008. Mapp<strong>in</strong>g long-distance migration <strong>in</strong> two <strong>Arctic</strong><br />

seabird species p. 74-76. In: Klitgaard, A.B. <strong>and</strong> Rasch, M. (eds.) 2008. Zackenberg<br />

Ecological Research Operations, 13 th Annual Report, 2007. – Copenhagen, Danish<br />

Polar Center, Danish Agency for Science, Technology <strong>and</strong> Innovation, M<strong>in</strong>istry <strong>of</strong><br />

Science, Technology <strong>and</strong> Innovation.


Egevang, C., I.J. Stenhouse, L.M. Rasmussen, M.W. Kristensen <strong>and</strong> F. Ugarte 2009.<br />

Breed<strong>in</strong>g <strong>and</strong> forag<strong>in</strong>g ecology <strong>of</strong> seabirds on S<strong>and</strong>øen 2008. In: Jensen, L.M. &<br />

Rasch, M. (eds.) 2009. Zackenberg Ecological Research Operations, 14 th Annual<br />

Report, 2008. National Environmental Research Institute, Aarhus University, Denmark.<br />

116 pp.<br />

Egevang, C., I.J. Stenhouse, R.A. Phillips, A. Petersen, J.W. Fox & J.R.D. Silk 2010.<br />

Track<strong>in</strong>g <strong>of</strong> <strong>Arctic</strong> <strong>terns</strong> Sterna paradisaea reveals longest animal migration. – Proceed<strong>in</strong>gs<br />

<strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the United States 107: 2078-2081.<br />

GSCD. 2009. The Greenl<strong>and</strong> Seabird Colony Database. http://www.dmu.dk/<br />

Greenl<strong>and</strong>/Olie+og+Miljoe/Havfuglekolonier/ accessed October 2009.<br />

Hatch, J. 2002. <strong>Arctic</strong> Tern Sterna paradisaea. The Birds <strong>of</strong> North America 707. Philadelphia,<br />

USA. 40 pp.<br />

Jørgensen, P.S., M.W. Kristensen <strong>and</strong> C. Egevang. 2007. Red Phalarope Phalaropus<br />

fulicarius <strong>and</strong> Red-necked Phalarope Phalaropus lobatus behavioural response<br />

to <strong>Arctic</strong> Tern Sterna paradisaea colonial alarms. Dansk Oritologisk Foren<strong>in</strong>gs<br />

Tidsskrift 101: 73-78.<br />

Levermann, N. <strong>and</strong> A.P. Tøttrup. 2007. Predator Effect <strong>and</strong> Behavioral Pat<strong>terns</strong> <strong>in</strong><br />

<strong>Arctic</strong> Terns (Sterna paradisaea) <strong>and</strong> Sab<strong>in</strong>e’s Gulls (Xema sab<strong>in</strong>i) Dur<strong>in</strong>g a Failed<br />

Breed<strong>in</strong>g Year. Waterbirds 30(3): 417-420.<br />

Møller, A.P., E. Flensted-Jensen <strong>and</strong> W. Mardal. 2006. Dispersal <strong>and</strong> climate change: a<br />

case study <strong>of</strong> the <strong>Arctic</strong> Tern Sterna paradisaea.<br />

doi:10.1111/j.1365-2486.2006.01216.x. Global Change Biology 12(10): 2005-2013.<br />

Monaghan, P., J.D. Uttley <strong>and</strong> M.D. Burns. 1992. Effect <strong>of</strong> changes <strong>in</strong> food availability<br />

on reproductive effort <strong>in</strong> <strong>Arctic</strong> Terns Sterna paradisaea. Ardea 80(1): 71-81.<br />

Monaghan, P., J.D. Uttley, M.D. Burns, C. Tha<strong>in</strong>e <strong>and</strong> J. Blackwood. 1989. The relationship<br />

between food supply, reproductive effort <strong>and</strong> <strong>breed<strong>in</strong>g</strong> success <strong>in</strong> <strong>Arctic</strong><br />

Terns Sterna paradisaea. Journal <strong>of</strong> Animal Ecology 58: 261-274.<br />

Parsons, I. Mitchell, A. Butler, N. Ratcliffe, M. Frederiksen, S. Foster <strong>and</strong> J.B. Reid.<br />

2008. Seabirds as <strong>in</strong>dicators <strong>of</strong> the mar<strong>in</strong>e environment. ICES Journal <strong>of</strong> Mar<strong>in</strong>e<br />

Science 65: 1520–1526.<br />

Piatt, J.F., W.J. Sydeman <strong>and</strong> F. Wiese. 2007. Seabirds as <strong>in</strong>dicators <strong>of</strong> mar<strong>in</strong>e ecosystems.<br />

Mar<strong>in</strong>e Ecology Progress Series 352: 199–204.<br />

Ratcliffe, N. 2004. <strong>Arctic</strong> Tern Sterna paradisaea. Seabird Populations <strong>of</strong> Brita<strong>in</strong> <strong>and</strong><br />

Irel<strong>and</strong>. P.I. Mitchell, S.F. Newton, N. Ratcliffe <strong>and</strong> T.E. Dunn. London, T & A D<br />

Poyser: 328-338.<br />

Salomonsen, F. 1950. The Birds <strong>of</strong> Greenl<strong>and</strong>. Copenhagen, Munksgaard.<br />

Suddaby, D. <strong>and</strong> N. Ratcliffe. 1997. The Effects <strong>of</strong> Fluctuat<strong>in</strong>g Food Availability on<br />

Breed<strong>in</strong>g <strong>Arctic</strong> Terns (Sterna paradisaea). Auk 114(3): 524-530.<br />

Thomas, L., J.L. Laake, S. Str<strong>in</strong>dberg, F.F.C. Marques, S.T. Buckl<strong>and</strong>, D.L. Borchers,<br />

D.R. Anderson, K.P. Burnham, S.L. Hedley <strong>and</strong> J.H. Pollard. 2006. Distance. UK,<br />

University <strong>of</strong> St. Andrews, UK.<br />

Weimerskirch, H. 2002. Seabird demography <strong>and</strong> its relationship with the mar<strong>in</strong>e environment.<br />

Biology <strong>of</strong> Mar<strong>in</strong>e Birds. E.A. Schreiber <strong>and</strong> J. Burger. New York, CRC<br />

Press: 115-135.<br />

ZERO 1997-2009. Zackenberg Ecological Research Operations annual reports <strong>in</strong> the<br />

period 1997-2009.<br />

95


Pooled data<br />

96<br />

Appendix I<br />

Detailed results from l<strong>in</strong>e transect counts conducted on Kitsissunnguit,<br />

2002 to 2006. Data on search effort from the isl<strong>and</strong>s <strong>in</strong> the archipelago are<br />

jo<strong>in</strong>t (pooled data) while po<strong>in</strong>t estimates <strong>of</strong> density (pairs per km 2 ) with<br />

st<strong>and</strong>ard error (SE), confi dence variance (CV) <strong>and</strong> confi dence <strong>in</strong>terval (CI)<br />

are given for each <strong>of</strong> the <strong>in</strong>dividual isl<strong>and</strong>s. Data were analysed us<strong>in</strong>g<br />

s<strong>of</strong>tware Distance 5.0 (Thomas et al. 2006) apply<strong>in</strong>g a half normal cos<strong>in</strong>e<br />

detection function with a 3% right truncation.<br />

2002 2003 2004 2005 2006<br />

ESW1 (SE) 1.9–(0.12) 2.3–(0.14) 3.0–(0.11) 3.3–(0.18) 2.6–(0.15)<br />

f (0) 2 (SE) 5.23–(0.319) 4.37–(0.270) 3.28–(0.126) 3.03–(0.169) 3.75–(0.213)<br />

Effort3 L(n) 8.6–(11) 9.4–(12) 17.8–(26) 8.9–(11) 7.7–(8)<br />

Observations (nests) 139 228 433 232 227<br />

Basis Ø West (0.90 km 2 )<br />

Density (SE) 4199–(1253.1) 6587–(1690.9) 4049–(2195.8) 3600–(1233.7) 5746–(2097.9)<br />

Population size (SE) 3785–(1129.4) 5938–(1524.1) 3650–(1979.0) 3244–(1111.6) 5177–(1890.0)<br />

CV (%) 29.84 25.67 54.22 34.27 36.51<br />

95% CI 177–81101 2791-12635 732-18198 1158-9084 1731-15487<br />

Basis Ø East (2.22 km 2 )<br />

Density (SE) 3483–(518.8) 5261–(651.1) 5514–(964.4) 3989–(322.4) 5345–(853.7)<br />

Population size (SE) 7740–(1152.8) 11688–(1446.6) 12251–(2142.7) 8868–(716.7) 11883–(1897.7)<br />

CV (%) 14.89 12.38 17.49 8.08 15.97<br />

95% CI 5368-11160 8561-15958 8264-18163 7422-10596 7627-18513<br />

Niaqornaq (0.45 km 2 )<br />

Density (SE) 7040–(2795.0) 2665–(1119.7) 4420–(1466.2) 5213–(1502.1)<br />

Population size (SE) 3159–(1254.1) 1245–(523.1) 1984–(658.0) 2346–(503.3)<br />

CV (%) 39.70 42.01 33.17 28.81<br />

95% CI 965-10342 356-4357 721-5461 562-5425<br />

Innersuatsiaaq (1.23 km 2 )<br />

Density (SE) 629–(340.8)<br />

Population size (SE) 776–(420.1)<br />

CV (%) 54.14<br />

95% CI 242-2494<br />

1Effective strip width (m)<br />

2 -3 Probability density function (10 )<br />

3Effort = length (L) <strong>of</strong> l<strong>in</strong>es (<strong>in</strong> km) <strong>and</strong> numbers (n) <strong>of</strong> l<strong>in</strong>es


Manus V<br />

RED PHALAROPE PHALAROPUS FULICARIUS<br />

AND RED-NECKED PHALAROPE<br />

PHALAROPUS LOBATUS<br />

BEHAVIOURAL RESPONSE TO ARCTIC TERN<br />

STERNA PARADISAEA COLONIAL ALARMS<br />

Peter Søgaard Jørgensen 1 , Mikkel Willemoes Kristensen 2 <strong>and</strong> Carsten Egevang 3<br />

1 Hovmålvej 80 st. -15<br />

DK-2300 Copenhagen S, Denmark<br />

(psjoergensen@hotmail.com)<br />

2 Langøgade 10, 1. tv.<br />

DK-2100 Copenhagen Ø, Denmark<br />

3 Greenl<strong>and</strong> Institute <strong>of</strong> Natural Resources,<br />

P.O. Box 570, 3900 Nuuk, Greenl<strong>and</strong><br />

Dansk Ornitologisk Foren<strong>in</strong>gs Tidsskrift 101 (3): 73-78, 2007


98<br />

Red Phalarope Phalaropus fulicarius <strong>and</strong> Red-necked<br />

Phalarope Phalaropus lobatus behavioural response to<br />

<strong>Arctic</strong> Tern Sterna paradisaea colonial alarms<br />

PETER SØGAARD JØRGENSEN, MIKKEL WILLEMOES KRISTENSEN <strong>and</strong> CARSTEN EGEVANG<br />

(Med et dansk resumé: Thorshanes og Od<strong>in</strong>shanes respons på alarmer i en havternekoloni)<br />

Abstract The <strong>breed<strong>in</strong>g</strong> association between <strong>Arctic</strong> Terns <strong>and</strong> Red <strong>and</strong> Red-necked Phalaropes has been mentioned<br />

several times <strong>in</strong> the ornithological literature, though mostly anecdotally. The present study, conducted<br />

at the Kitsissunnguit archipelago <strong>in</strong> western Greenl<strong>and</strong>, <strong>in</strong>vestigates phalarope behavioural response to <strong>Arctic</strong><br />

Tern colonial alarms, specifically the relationship between type <strong>and</strong> duration <strong>of</strong> tern alarms <strong>and</strong> phalarope<br />

response type. The majority <strong>of</strong> tern alarms elicited a visible response from the phalaropes. No difference <strong>in</strong><br />

phalarope response type was detected between true alarms (tern responses to the presence <strong>of</strong> gulls, falcons<br />

or humans) <strong>and</strong> dreads (false alarms). Tern alarms to which the phalaropes reacted were <strong>of</strong> longer duration than<br />

alarms that caused no change <strong>in</strong> phalarope behaviour, whereas no relationship was found between tern alarm<br />

duration <strong>and</strong> phalarope response type (passive vs active). In conclusion, phalaropes respond strongly to tern alarms,<br />

but do not differentiate between predator-related alarms <strong>and</strong> dreads. These f<strong>in</strong>d<strong>in</strong>gs support the view that phalaropes,<br />

where possible, take advantage from <strong>Arctic</strong> Tern colonies, <strong>and</strong> that this relationship – fulfill<strong>in</strong>g the criteria <strong>of</strong><br />

both the <strong>in</strong>formation parasitism <strong>and</strong> the defence parasitism hypotheses – expla<strong>in</strong>s the high densities <strong>of</strong> phalaropes<br />

at Kitsissunguit.<br />

Introduction<br />

Beneficial <strong>breed<strong>in</strong>g</strong> associations are well known<br />

<strong>in</strong> multi-species colonies <strong>of</strong> birds. Many examples<br />

are known among colonial waterbirds (e.g., Alberico<br />

et al. 1991). Typically, such relationships form<br />

between a semi-aggressive, bold species (<strong>of</strong>ten a<br />

larid) <strong>and</strong> a more timid species <strong>of</strong> waterbird, where<br />

the latter benefits from the strong colony defence<br />

Dansk Orn. Foren. Tidsskr. 101 (2007): 73-78<br />

<strong>of</strong> the bold species. In most <strong>of</strong> these cases, however,<br />

the details <strong>of</strong> the relationship are unknown <strong>and</strong><br />

the mechanism through which the timid species<br />

benefits from the <strong>breed<strong>in</strong>g</strong> association has not<br />

been documented.<br />

In order to obta<strong>in</strong> a higher <strong>in</strong>dividual survival<br />

<strong>and</strong> reproductive output, a timid species can benefit<br />

from <strong>breed<strong>in</strong>g</strong> associations with more aggressive<br />

73


74 Phalarope response to tern alarms<br />

species if the bold species provides a higher predator<br />

detection rate <strong>and</strong>/or predator detection at a greater<br />

distance, giv<strong>in</strong>g the timid species more time to react<br />

(the <strong>in</strong>formation parasitism hypothesis, Nuechterle<strong>in</strong><br />

1981); or if the bold species aggressively defends<br />

the surround<strong>in</strong>gs <strong>of</strong> its nest <strong>and</strong> thereby <strong>in</strong>directly<br />

provides protection to the timid species (defence<br />

parasitism hypothesis, Dyrcz et al. 1981).<br />

<strong>Arctic</strong> Terns Sterna paradisaea have been<br />

known to associate with high <strong>breed<strong>in</strong>g</strong> densities<br />

<strong>of</strong> several species <strong>of</strong> shorebirds, <strong>in</strong>clud<strong>in</strong>g Red-necked<br />

Phalarope Phalaropus lobatus <strong>and</strong> Red Phalarope<br />

Phalaropus fulicarius (Løvenskiold 1964, Hildén<br />

& Voulanto 1972, Cramp & Simmons 1983,<br />

Egevang et al. 2004), Ruddy Turnstone Arenaria<br />

<strong>in</strong>terpres (Brearey & Hildén 1985) <strong>and</strong> Purple<br />

S<strong>and</strong>piper Calidris maritima (Summers & Nicoll<br />

2004).<br />

The present study focuses on the association between<br />

<strong>Arctic</strong> Terns <strong>and</strong> phalaropes <strong>in</strong> a major <strong>Arctic</strong><br />

Tern colony <strong>in</strong> western Greenl<strong>and</strong>. Us<strong>in</strong>g relatively<br />

simple observations <strong>of</strong> phalarope response to tern<br />

alarms <strong>and</strong> dreads (false alarms), we <strong>in</strong>vestigate<br />

whether phalaropes use <strong>in</strong>formation parasitism to<br />

benefit from the <strong>terns</strong>, <strong>and</strong> which behavioural<br />

responses they express.<br />

Study area <strong>and</strong> methods<br />

Fieldwork was conducted at the Kitsissunnguit<br />

(Grønne Ejl<strong>and</strong>) archipelago <strong>in</strong> the southern part<br />

<strong>of</strong> Disko Bay, West Greenl<strong>and</strong> (68˚50'N, 52˚00'W)<br />

<strong>in</strong> the period 2-28 July, 2006. Kitsissunnguit is<br />

the largest <strong>Arctic</strong> Tern colony <strong>in</strong> Greenl<strong>and</strong> with<br />

16000-22000 estimated <strong>breed<strong>in</strong>g</strong> pairs <strong>in</strong> 2002-<br />

2006 (Egevang et al. 2004; this study). By <strong>Arctic</strong><br />

st<strong>and</strong>ards, the site holds a rich avifauna with<br />

25 <strong>breed<strong>in</strong>g</strong> species recorded, some <strong>of</strong> them rare<br />

<strong>in</strong> West Greenl<strong>and</strong> (e.g., Red Phalarope, Long-tailed<br />

Skua Stercorarius longicaudus, Ross's Gull<br />

Rhodostethia rosea, cf. Kampp & Kristensen<br />

1980, Kampp 1982, Frich 1997). The major avian<br />

predators are Glaucous Gull Larus hyperboreus,<br />

Great Black-backed Gull Larus mar<strong>in</strong>us, Gyrfalcon<br />

Falco rusticolus, Peregr<strong>in</strong>e Falcon Falco peregr<strong>in</strong>us<br />

<strong>and</strong> Raven Corvus corax. <strong>Arctic</strong> fox<br />

Alopex lagopus also occur at the archipelago<br />

where it occasionally breeds, <strong>and</strong> although <strong>Arctic</strong><br />

Terns <strong>and</strong> foxes may co-exist at Kitsissunnguit<br />

for a few years (Kampp 1982), the <strong>terns</strong> probably<br />

avoid the easternmost isl<strong>and</strong> <strong>in</strong> the archipelago<br />

because foxes have been established there for<br />

decades (Egevang et al. 2004). The coasts <strong>of</strong> the<br />

isl<strong>and</strong>s are generally rocky, whereas the <strong>in</strong>l<strong>and</strong> is<br />

covered by dwarf scrub heath with willow Salix<br />

spp., dwarf birch Betula nana <strong>and</strong> crowberry<br />

Empetrum nigrum as the dom<strong>in</strong>ant plant species.<br />

There are many moist areas, ponds <strong>and</strong> small<br />

lakes with sedge Carex spp. <strong>and</strong> cotton grass<br />

Eriophorum spp.<br />

The current study was conducted at Basisø, a<br />

fox-free isl<strong>and</strong> <strong>of</strong> approximately 3.5 km 2 . In 2006<br />

there were 45 pairs <strong>of</strong> Red-necked Phalaropes <strong>and</strong><br />

7 <strong>of</strong> Red Phalaropes on the isl<strong>and</strong>, which numbers<br />

may underestimate the actual number <strong>of</strong> nests<br />

because females may be poly<strong>and</strong>rous (Cramp &<br />

Simmons 1983).<br />

Observations <strong>of</strong> phalarope <strong>and</strong> tern behaviour<br />

were conducted from the edge <strong>of</strong> two small ponds.<br />

All phalarope <strong>in</strong>dividuals present at the ponds<br />

dur<strong>in</strong>g an observation period were kept under observation.<br />

The three ma<strong>in</strong> behaviours performed<br />

by phalaropes outside tern alarm periods were<br />

feed<strong>in</strong>g, rest<strong>in</strong>g <strong>and</strong> preen<strong>in</strong>g. Observation periods<br />

varied from one to three hours, <strong>in</strong> total cover<strong>in</strong>g 30<br />

hours, <strong>and</strong> were evenly distributed over the study<br />

period. Initially the phalaropes preferred a pond <strong>of</strong><br />

c. 2500 m 2 , but after the first week the behaviour<br />

<strong>of</strong> the birds changed <strong>and</strong>, apparently as a result <strong>of</strong><br />

the fledg<strong>in</strong>g <strong>of</strong> the chicks, they began to frequent<br />

a new pond adjacent to the first. Both sites <strong>of</strong>fered<br />

a good view <strong>of</strong> the water surface <strong>and</strong> the br<strong>in</strong>ks.<br />

Apart from the phalaropes <strong>and</strong> a high number <strong>of</strong><br />

<strong>Arctic</strong> Terns, the <strong>breed<strong>in</strong>g</strong> species <strong>in</strong> the surround<strong>in</strong>g<br />

area were Mallard Anas platyrhynchos, Longtailed<br />

Duck Clangula hyemalis, <strong>and</strong> Red-breasted<br />

Merganser Mergus serrator.<br />

Both phalarope species were <strong>in</strong>cluded <strong>in</strong> the<br />

study but no dist<strong>in</strong>ction between them were made,<br />

due to their very similar behaviour <strong>and</strong> response to<br />

aerial predators. The dataset ma<strong>in</strong>ly <strong>in</strong>cludes local<br />

breeders but, as the season advanced, these became<br />

mixed with migrants <strong>and</strong> with local juveniles.<br />

The follow<strong>in</strong>g behavioural pat<strong>terns</strong> were recorded:<br />

Tern alarms. The duration <strong>of</strong> tern alarms, def<strong>in</strong>ed<br />

as mass up-flight by at least half <strong>of</strong> the <strong>terns</strong> <strong>in</strong><br />

the study area, was recorded. The type <strong>of</strong> alarm<br />

was categorized as a) orig<strong>in</strong>at<strong>in</strong>g from disturbance<br />

from gull or falcon, b) orig<strong>in</strong>at<strong>in</strong>g from human<br />

disturbance, or c) dreads (false alarms).<br />

Phalarope response to tern alarms. Dur<strong>in</strong>g tern<br />

alarms the behavioural response <strong>of</strong> the phalaropes<br />

was recorded. Six different types <strong>of</strong> response were<br />

identified: 1) no response (no change <strong>in</strong> behaviour),<br />

2) tuck<strong>in</strong>g to water surface (Tuck<strong>in</strong>g), 3) stopp<strong>in</strong>g<br />

ongo<strong>in</strong>g behaviour <strong>and</strong>/or look<strong>in</strong>g up (Stop/look<strong>in</strong>g<br />

up), 4) take-<strong>of</strong>f from pond (Upflight), <strong>and</strong> 5)<br />

99


100<br />

swimm<strong>in</strong>g out on pond surface or 6) to the br<strong>in</strong>k<br />

(Swim surface/br<strong>in</strong>k). Phalarope response dur<strong>in</strong>g<br />

each tern alarm sometimes <strong>in</strong>cluded more than one<br />

<strong>of</strong> these types, but only the predom<strong>in</strong>ant one was<br />

<strong>in</strong>cluded <strong>in</strong> the statistical analysis.<br />

Response types 2) <strong>and</strong> 3) were classified as<br />

passive, types 4), 5) <strong>and</strong> 6) as active.<br />

The frequency distributions <strong>of</strong> phalarope responses<br />

were statistically tested us<strong>in</strong>g c 2 -tests.<br />

Mann-Whitney U-tests were used to test the<br />

difference <strong>in</strong> duration <strong>of</strong> tern alarms grouped on<br />

basis <strong>of</strong> phalarope response.<br />

Results<br />

The <strong>terns</strong> responded strongly to predators with<strong>in</strong><br />

the boundaries <strong>of</strong> the colony, <strong>and</strong> the presence<br />

<strong>of</strong> aerial predators resulted <strong>in</strong> fierce mobb<strong>in</strong>g<br />

behaviour <strong>in</strong>volv<strong>in</strong>g hundreds, on a few occasions<br />

thous<strong>and</strong>s <strong>of</strong> birds. The type <strong>and</strong> <strong>in</strong>tensity <strong>of</strong> the<br />

vocalisation <strong>of</strong> the <strong>terns</strong> varied somewhat, depend<strong>in</strong>g<br />

on the predator species, so that at least three<br />

types <strong>of</strong> alarm calls (falcon, gull, human) could be<br />

dist<strong>in</strong>guished <strong>in</strong> the field. The mean duration <strong>of</strong><br />

gull/falcon alarms was 30.3 s (n=17), which is longer<br />

than the mean duration <strong>of</strong> dreads (23.0 s, n=44)<br />

(Mann-Whitney U-test, U=239.5, P


76 Phalarope response to tern alarms<br />

Discussion<br />

The study on phalarope behavioural response to<br />

<strong>Arctic</strong> Tern alarms at Kitsissunnguit reveals a close<br />

association between the species. The phalaropes<br />

reacted <strong>in</strong>stantly to tern alarms <strong>in</strong> 84% <strong>of</strong> the recorded<br />

alarms, <strong>in</strong>dicat<strong>in</strong>g a one-way transfer <strong>of</strong><br />

<strong>in</strong>formation from <strong>terns</strong> to phalaropes, as implied<br />

by the <strong>in</strong>formation parasitism hypothesis. At large<br />

<strong>Arctic</strong> Tern colonies (such as Kitsissunnguit) a<br />

predator will be detected at a considerable distances,<br />

<strong>and</strong> the <strong>in</strong>tensity <strong>of</strong> the alarm will <strong>in</strong>crease as the<br />

predator travels through the colony. This provides<br />

<strong>terns</strong> <strong>and</strong> other birds <strong>in</strong> the colony with an early<br />

warn<strong>in</strong>g system, pass<strong>in</strong>g on <strong>in</strong>formation on direction,<br />

distance <strong>and</strong> species <strong>of</strong> the approach<strong>in</strong>g predator.<br />

This early warn<strong>in</strong>g gives the <strong>breed<strong>in</strong>g</strong> birds the<br />

time necessary to perform anti-predator behaviour<br />

<strong>and</strong> warn <strong>of</strong>fspr<strong>in</strong>g to seek cover.<br />

Spontaneously occurr<strong>in</strong>g dreads without an<br />

obvious cause are common <strong>in</strong> tern colonies. The<br />

reason is not known; among the proposed causes<br />

is that it may contribute to the ma<strong>in</strong>ta<strong>in</strong>ance <strong>of</strong><br />

pair bonds (Cullen 1960), <strong>and</strong> irrespective <strong>of</strong><br />

the underly<strong>in</strong>g cause the dreads may serve as an<br />

<strong>in</strong>dicator <strong>of</strong> the frequency <strong>of</strong> predator visits to the<br />

colony (Meehan & Nisbet 2002). In the present<br />

study more than two thirds <strong>of</strong> the recorded alarms<br />

were dreads. The fact that phalaropes did not<br />

show any difference <strong>in</strong> behavioural response to<br />

dreads versus alarms <strong>in</strong>volv<strong>in</strong>g predators <strong>in</strong>dicates<br />

that the phalaropes react to tern alarms before they<br />

have visually identified a potential predator.<br />

Tern alarm <strong>in</strong>tensity <strong>and</strong> duration depends on<br />

the predator species, but also on how close the<br />

predator is to a given part <strong>of</strong> the colony <strong>and</strong> <strong>of</strong> the<br />

behaviour exhibited by the predator. For example<br />

will low hunt<strong>in</strong>g flights result <strong>in</strong> much more<br />

<strong>in</strong>tense alarms from the <strong>terns</strong> than straight transits<br />

above the colony. These factors may also contribute<br />

to expla<strong>in</strong><strong>in</strong>g why phalaropes apparently do not<br />

differentiate between real tern alarms <strong>and</strong> dreads,<br />

even though predatory alarms on average last<br />

longer than dreads, <strong>and</strong> phalaropes respond more<br />

frequently to longer alarms.<br />

The dom<strong>in</strong>ance <strong>of</strong> passive responses to active<br />

ones may serve to lower depredation on eggs or<br />

chicks, s<strong>in</strong>ce it allows the phalarope to stay <strong>in</strong> its<br />

territory, whereas the upflight response means that<br />

it has to leave, even <strong>in</strong> the case <strong>of</strong> a false alarm<br />

(Alberico et al. 1991).<br />

The mean frequency <strong>of</strong> tern upflights (2.6 hour -1 )<br />

is comparable to the mean rate <strong>of</strong> 2 hour -1 quoted<br />

by Cramp (1985); it may, however, vary through<br />

the <strong>breed<strong>in</strong>g</strong> period (Cramp l.c.). The frequency<br />

<strong>of</strong> gull/falcon alarms at Kitsissunnguit (0.26<br />

hour -1 ) is lower than the about 4 hour -1 – caused<br />

by Herr<strong>in</strong>g Gull alone – found dur<strong>in</strong>g the hatch<strong>in</strong>g<br />

<strong>and</strong> chick rear<strong>in</strong>g stage <strong>in</strong> a small (505 pairs) mixed<br />

tern colony <strong>in</strong> Canada (Whittam & Leonard 1999).<br />

This may <strong>in</strong>dicate that predator numbers are<br />

relatively low at Kitsissunnguit. The many <strong>terns</strong><br />

<strong>in</strong> the colony form an effective defence towards<br />

<strong>in</strong>truders such as Ravens, gulls <strong>and</strong> skuas. However,<br />

falcons are able to outfly the <strong>terns</strong> <strong>and</strong> are less<br />

affected by their mobb<strong>in</strong>g (Egevang et al. 2005).<br />

Egevang et al. (2004) documents that a marked<br />

decl<strong>in</strong>e <strong>in</strong> phalarope numbers took place after<br />

<strong>Arctic</strong> Terns ab<strong>and</strong>oned the easternmost isl<strong>and</strong> <strong>in</strong><br />

the Kitsissunnguit archipelago, Angissat. In addition,<br />

they discuss whether the unusually high <strong>breed<strong>in</strong>g</strong><br />

density <strong>of</strong> Red-necked Phalarope – <strong>and</strong> the presence<br />

<strong>of</strong> the rare Red Phalarope – at Kitsissunnguit is<br />

a direct result <strong>of</strong> the presence <strong>of</strong> a major tern colony,<br />

i.e., if the distribution <strong>of</strong> <strong>terns</strong> determ<strong>in</strong>es the<br />

distribution <strong>of</strong> phalaropes, or if both <strong>terns</strong> <strong>and</strong><br />

phalaropes simply prefer a fox-free environment<br />

so that the presence or absence <strong>of</strong> foxes determ<strong>in</strong>es<br />

the distribution <strong>of</strong> both <strong>terns</strong> <strong>and</strong> phalaropes. The<br />

results <strong>of</strong> the present study verify the strong<br />

behavioural response <strong>of</strong> phalaropes to tern alarms,<br />

show<strong>in</strong>g that the relationship between the species<br />

fulfils the criteria <strong>of</strong> both the <strong>in</strong>formation parasitism<br />

<strong>and</strong> the defence parasitism hypothesis, <strong>and</strong> thereby<br />

strengthen the first hypothesis, without be<strong>in</strong>g able<br />

to reject the second.<br />

Acknowledgements<br />

We wish to express our gratitude to Rasmus Lauridsen,<br />

Greenl<strong>and</strong> Institute <strong>of</strong> Natural Resources, for excellent<br />

company <strong>in</strong> the field, <strong>and</strong> to F<strong>in</strong>n Steffens, capta<strong>in</strong> <strong>of</strong> m/v<br />

Maja S <strong>of</strong> Qeqertarsuaq, for logistic support. The fieldwork<br />

<strong>in</strong> 2006 was f<strong>in</strong>anced by the Greenl<strong>and</strong> Institute<br />

<strong>of</strong> Natural Resources <strong>and</strong> the Commission for Scientific<br />

Research <strong>in</strong> Greenl<strong>and</strong> (KVUG).<br />

Resumé<br />

Thorshanes og Od<strong>in</strong>shanes respons på alarmer i en<br />

havternekoloni<br />

Den positive ynglerelation mellem svømmesnepperne<br />

Thorshane Phalaropus fulicarius og Od<strong>in</strong>shane P. lobatus<br />

på den ene side, og Havternen Sterna paradisaea på den<br />

<strong>and</strong>en, er velkendt, men er <strong>of</strong>test beh<strong>and</strong>let rent anekdotisk<br />

i den ornitologiske litteratur. Fra den 2. til 28. juli 2006<br />

undersøgte vi de to svømme sneppers adfærdsrespons på<br />

kollektive havternealarmer på øgruppen Kitsissunnguit<br />

(Grønne Ejl<strong>and</strong>) i Disko Bugt i Grønl<strong>and</strong>. Undersøgelsen<br />

blev foretaget ved relativt simple observationer af typen<br />

101


102<br />

og længden af havternealarmerne og typen af svømmesneppernes<br />

respons herpå.<br />

Hyppigheden af havternealarmer på hvilke svømmesnepperne<br />

responderede var signifikant højere end alarmer<br />

uden respons. Der blev ikke fundet nogen forskel<br />

mellem falske ternealarmer og ternealarmer forårsaget<br />

af måger, falke eller mennesker hvad angår hyppighed<br />

og fordel<strong>in</strong>g af manglende respons, passiv respons, og<br />

aktiv respons. Alarmer af den sidstnævnte type var dog af<br />

signifikant længere varighed end falske alarmer. Ternealarmer<br />

med svømmesneppe-respons varede i gennemsnit<br />

længere end alarmer uden respons, mens der ikke<br />

var nogen tilsvarende signifikant forskel på længden af<br />

ternealarmer med henholdsvis aktiv og passiv svømmesneppe-respons.<br />

Resultaterne viser, at svømmesnepperne reagerer markant<br />

på ternealarmer, og at de i deres respons ikke skelner<br />

mellem rovdyrsrelaterede alarmer og falske alarmer.<br />

Resultaterne understøtter formodn<strong>in</strong>gen om, at den<br />

høje yngletæthed af Od<strong>in</strong>shane – og tilstedeværelsen af<br />

Thorshane – på Kitissunnguit skyldes at ynglende svømmesnepper<br />

tiltrækkes af havternekolonier.<br />

Phalarope response to tern alarms 77<br />

Phalaropes <strong>breed<strong>in</strong>g</strong> <strong>in</strong> tern colonies use tern alarms (upflights <strong>and</strong> calls) as warn<strong>in</strong>g signals <strong>in</strong>dicat<strong>in</strong>g the presence<br />

<strong>of</strong> predators, but are unable to dist<strong>in</strong>guish between true <strong>and</strong> false alarms. Photo: Mikkel Willemoes Kristensen.<br />

References<br />

Alberico, J.A.R., J.M. Reed & L.W. Or<strong>in</strong>g 1991: Nest<strong>in</strong>g<br />

near a Common Tern colony <strong>in</strong>creases <strong>and</strong> decreases<br />

Spotted S<strong>and</strong>piper nest predation. – Auk 108: 904-<br />

910.<br />

Brearey, D. & O. Hildén 1985: Nest<strong>in</strong>g <strong>and</strong> egg-predation<br />

by Turnstones Arenaria <strong>in</strong>terpres <strong>in</strong> larid colonies.<br />

– Ornis Sc<strong>and</strong>. 16: 283-292.<br />

Cramp, S. & K.E.L. Simmons (eds) 1983: The birds <strong>of</strong><br />

the western Palearctic. Vol. 3. – Oxford University<br />

Press.<br />

Cramp, S. (ed.) 1985: The birds <strong>of</strong> the western Palearctic.<br />

Vol. 4. – Oxford University Press.<br />

Cullen, J.M. 1960: The aerial display <strong>of</strong> the <strong>Arctic</strong> Tern<br />

<strong>and</strong> other species. – Ardea 48: 1-37.<br />

Dyrcz, A., J. Witkowski & J. Okulewicz 1981: Nest<strong>in</strong>g <strong>of</strong><br />

timid waders <strong>in</strong> the vic<strong>in</strong>ity <strong>of</strong> bold ones as an antipredator<br />

adaptation. – Ibis 123: 542-545.<br />

Egevang, C., K. Kampp & D. Boertmann 2004: The<br />

<strong>breed<strong>in</strong>g</strong> association <strong>of</strong> Red Phalaropes with <strong>Arctic</strong><br />

Terns: response to a redistribution <strong>of</strong> <strong>terns</strong> <strong>in</strong> a major<br />

Greenl<strong>and</strong> colony. – Waterbirds 27: 406-410.<br />

Egevang, C., D. Boertmann & O. Stenderup Kristensen<br />

2005: Moniter<strong>in</strong>g af havternebest<strong>and</strong>en på Kitsis-


78 Phalarope response to tern alarms<br />

sunnguit (Grønne Ejl<strong>and</strong>) og i den sydlige del af Disko<br />

Bugt, 2002-2004. – Techn. rep. 62, P<strong>in</strong>ngortitaleriffik/<br />

Grønl<strong>and</strong>s Natur<strong>in</strong>stitut.<br />

Hildén, O. & S. Voulanto 1972: Breed<strong>in</strong>g <strong>biology</strong> <strong>of</strong> the<br />

red-necked phalarope Phalaropus lobatus <strong>in</strong> F<strong>in</strong>l<strong>and</strong>.<br />

– Ornis Fenn. 49: 57-85.<br />

Kampp, K. 1982: Notes on the Long-tailed Skua Stercorarius<br />

longicaudus <strong>in</strong> West Greenl<strong>and</strong>. – Dansk Orn.<br />

Foren. Tidsskr. 76: 129-135.<br />

Kampp, K. & R.M. Kristensen 1980: Ross's Gull Rhodostethia<br />

rosea <strong>breed<strong>in</strong>g</strong> <strong>in</strong> Disko Bay, West Greenl<strong>and</strong>,<br />

1979. – Dansk Orn. Foren. Tidsskr. 74: 129-135.<br />

Løvenskiold, H.L. 1964: Avifauna Svalbardensis. – Norsk<br />

Polar<strong>in</strong>stitut, Oslo.<br />

Meehan, T.D. & I.C.T. Nisbet 2002: Nest attentiveness<br />

<strong>in</strong> common <strong>terns</strong> threatened by a model predator.<br />

– Waterbirds 25: 278-284.<br />

Nuechterle<strong>in</strong>, G.L. 1981: Information parasitism <strong>in</strong><br />

mixed colonies <strong>of</strong> Western Grebes <strong>and</strong> Forster's Terns.<br />

– Anim. Behav. 29: 985-989.<br />

Summers, R.W. & M. Nicoll 2004: Geographical variation<br />

<strong>in</strong> the <strong>breed<strong>in</strong>g</strong> <strong>biology</strong> <strong>of</strong> the Purple S<strong>and</strong>piper<br />

Calidris maritima. – Ibis 146: 303-313.<br />

Whittam, R.M. & M.L. Leonard 1999: Predation <strong>and</strong><br />

<strong>breed<strong>in</strong>g</strong> success <strong>in</strong> Roseate Terns. – Can. J. Zool 77:<br />

851-856.<br />

Accepted 2 June 2007<br />

Peter Søgaard Jørgensen (psjoergensen@hotmail.com)<br />

Hovmålvej 80 st. - 15,<br />

DK-2300 Copenhagen S, Denmark.<br />

Mikkel Willemoes Kristensen<br />

Langøgade 10, 1. tv.<br />

DK-2100 Copenhagen Ø, Denmark<br />

Carsten Egevang<br />

Greenl<strong>and</strong> Institute <strong>of</strong> Natural Resources,<br />

P.O. Box 570, 3900 Nuuk, Greenl<strong>and</strong><br />

103


MIGRATION AND BREEDING BIOLOGY OF<br />

ARCTIC TERNS IN GREENLAND<br />

This thesis presents novel fi nd<strong>in</strong>gs for the <strong>Arctic</strong> tern <strong>in</strong><br />

Greenl<strong>and</strong>.<br />

Included is a study on <strong>Arctic</strong> tern migration– the longest<br />

annual migration ever recorded <strong>in</strong> any animal. The study<br />

documented how Greenl<strong>and</strong> <strong>and</strong> Icel<strong>and</strong> <strong>breed<strong>in</strong>g</strong> <strong>terns</strong><br />

conduct the roundtrip migration to the Weddell Sea <strong>in</strong><br />

Antarctica <strong>and</strong> back. Although the sheer distance (71,000<br />

km on average) travelled by the birds is <strong>in</strong>terest<strong>in</strong>g, the<br />

study furthermore showed how the birds depend on highproductive<br />

at-sea areas <strong>and</strong> global w<strong>in</strong>d systems dur<strong>in</strong>g<br />

their massive migration.<br />

Furthermore <strong>in</strong>cluded is the fi rst quantifi ed estimate <strong>of</strong> the<br />

capacity to produce a replacement clutch <strong>in</strong> <strong>Arctic</strong> <strong>terns</strong>.<br />

We found that approximately half <strong>of</strong> the aff ected birds<br />

would produce a replacement clutch when the eggs were<br />

removed late <strong>in</strong> the <strong>in</strong>cubation period.<br />

At a level <strong>of</strong> more national <strong>in</strong>terest, the study produced the<br />

fi rst estimates <strong>of</strong> the key prey species <strong>of</strong> the <strong>Arctic</strong> tern <strong>in</strong><br />

Greenl<strong>and</strong>. Although zooplankton <strong>and</strong> various fi sh species<br />

were present <strong>in</strong> the chick diet <strong>of</strong> <strong>terns</strong> <strong>breed<strong>in</strong>g</strong> <strong>in</strong> Disko<br />

Bay, Capel<strong>in</strong> was the s<strong>in</strong>gle most important prey species<br />

found <strong>in</strong> all age groups <strong>of</strong> chicks.<br />

The thesis also <strong>in</strong>cludes a study on the fl uctuat<strong>in</strong>g <strong>breed<strong>in</strong>g</strong><br />

found <strong>in</strong> <strong>Arctic</strong> <strong>terns</strong>. Breed<strong>in</strong>g birds showed a considerable<br />

variation <strong>in</strong> colony size between years <strong>in</strong> the small <strong>and</strong> mid<br />

sized colonies <strong>of</strong> Disko Bay. These variations were likely to<br />

be l<strong>in</strong>ked to local phenomena, such as disturbance from<br />

predators, rather than to large-scale occurr<strong>in</strong>g phenomena.<br />

Included is also a study that documents the <strong>breed<strong>in</strong>g</strong> association<br />

between <strong>Arctic</strong> <strong>terns</strong> <strong>and</strong> other <strong>breed<strong>in</strong>g</strong> waterbirds.<br />

At Kitsissunnguit a close behavioural response to tern<br />

alarms could be identifi ed. These fi nd<strong>in</strong>gs imply that the altered<br />

distributions <strong>of</strong> waterbirds observed at Kitsissunnguit<br />

were governed by the distribution <strong>of</strong> <strong>breed<strong>in</strong>g</strong> <strong>Arctic</strong> <strong>terns</strong>.<br />

Included <strong>in</strong> the thesis are furthermore results with an appeal<br />

to the Greenl<strong>and</strong> management agencies. Along with<br />

estimates <strong>of</strong> the <strong>Arctic</strong> tern population size at the two most<br />

important <strong>Arctic</strong> tern colonies <strong>in</strong> West Greenl<strong>and</strong> <strong>and</strong> East<br />

Greenl<strong>and</strong>, the study produced recommendations on how a<br />

potential future susta<strong>in</strong>able egg harvest could be carried out,<br />

<strong>and</strong> on how to monitor <strong>Arctic</strong> tern colonies <strong>in</strong> Greenl<strong>and</strong>.<br />

ISBN: 87-91214-46-7<br />

ISBN (DMU): 978-87-7073-166-9

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!